IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v23y2012i8p1233-1260.html
   My bibliography  Save this article

Wind Farms in Eastern Australia — Recent Lessons

Author

Listed:
  • Paul Miskelly

Abstract

Academic discussion continues as to whether a fleet of grid-connected wind farms, widely dispersed across a single grid network, can provide a reliable electricity supply. One opinion is that wide geographical dispersion of wind farms provides sufficient smoothing of the intermittent and highly variable output of individual wind farms enabling the wind farm fleet to provide for base load demand. In an examination of the 5-minute time-averaged wind farm operational data for 21 large wind farms connected to the eastern Australian grid - geographically the largest, most widely dispersed, single interconnected grid in the world (AER, [1]) - this paper challenges that opinion. The findings also suggest that the connection of such a wind farm fleet, even one that is widely dispersed, poses significant security and reliability concerns to the eastern Australian grid. These findings have similar implications for the impact of wind farms on the security of electricity grids worldwide.

Suggested Citation

  • Paul Miskelly, 2012. "Wind Farms in Eastern Australia — Recent Lessons," Energy & Environment, , vol. 23(8), pages 1233-1260, December.
  • Handle: RePEc:sae:engenv:v:23:y:2012:i:8:p:1233-1260
    DOI: 10.1260/0958-305X.23.8.1233
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.23.8.1233
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.23.8.1233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2012. "Emissions savings from wind power generation: Evidence from Texas, California and the Upper Midwest," Working Papers 2012-03, Colorado School of Mines, Division of Economics and Business.
    2. Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Cornelis van Kooten, 2015. "All you want to know about the Economics of Wind Power," Working Papers 2015-07, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    2. Trainer, Ted, 2017. "A critical analysis of the 2014 IPCC report on capital cost of mitigation and of renewable energy," Energy Policy, Elsevier, vol. 104(C), pages 214-220.
    3. Trainer, Ted, 2019. "Some questions concerning the Blakers et al. case that pumped hydro storage can enable 100% electricity supply," Energy Policy, Elsevier, vol. 128(C), pages 470-475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    2. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    3. Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    5. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
    6. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    7. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    8. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    9. Trainer, Ted, 2010. "Can renewables etc. solve the greenhouse problem? The negative case," Energy Policy, Elsevier, vol. 38(8), pages 4107-4114, August.
    10. Qadrdan, Meysam & Ameli, Hossein & Strbac, Goran & Jenkins, Nicholas, 2017. "Efficacy of options to address balancing challenges: Integrated gas and electricity perspectives," Applied Energy, Elsevier, vol. 190(C), pages 181-190.
    11. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    12. Wichsinee Wibulpolprasert, 2016. "Optimal Environmental Policies and Renewable Energy Investment in Electricity Markets," PIER Discussion Papers 47, Puey Ungphakorn Institute for Economic Research.
    13. Wheatley, Joseph, 2013. "Quantifying CO2 savings from wind power," Energy Policy, Elsevier, vol. 63(C), pages 89-96.
    14. G. Cornelis van Kooten, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 2009-04, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    15. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    16. Paul, Anthony & Palmer, Karen & Woerman, Matt, 2014. "Designing by Degrees: Flexibility and Cost-Effectiveness in Climate PolicyAbstract: Substantially reducing carbon dioxide (CO2) emissions from electricity production will require a transformation of t," RFF Working Paper Series dp-14-05, Resources for the Future.
    17. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    18. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    19. Leahy, P.G. & Foley, A.M., 2012. "Wind generation output during cold weather-driven electricity demand peaks in Ireland," Energy, Elsevier, vol. 39(1), pages 48-53.
    20. Wichsinee Wibulpolprasert, 2016. "Optimal Environmental Policies And Renewable Energy Investment: Evidence From The Texas Electricity Market," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-41, November.
    21. Santos-Alamillos, F.J. & Thomaidis, N.S. & Quesada-Ruiz, S. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2016. "Do current wind farms in Spain take maximum advantage of spatiotemporal balancing of the wind resource?," Renewable Energy, Elsevier, vol. 96(PA), pages 574-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:23:y:2012:i:8:p:1233-1260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.