IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i8p3202-3215.html
   My bibliography  Save this article

Will British weather provide reliable electricity?

Author

Listed:
  • Oswald, James
  • Raine, Mike
  • Ashraf-Ball, Hezlin

Abstract

There has been much academic debate on the ability of wind to provide a reliable electricity supply. The model presented here calculates the hourly power delivery of 25Â GW of wind turbines distributed across Britain's grid, and assesses power delivery volatility and the implications for individual generators on the system. Met Office hourly wind speed data are used to determine power output and are calibrated using Ofgem's published wind output records. There are two main results. First, the model suggests that power swings of 70% within 12Â h are to be expected in winter, and will require individual generators to go on or off line frequently, thereby reducing the utilisation and reliability of large centralised plants. These reductions will lead to increases in the cost of electricity and reductions in potential carbon savings. Secondly, it is shown that electricity demand in Britain can reach its annual peak with a simultaneous demise of wind power in Britain and neighbouring countries to very low levels. This significantly undermines the case for connecting the UK transmission grid to neighbouring grids. Recommendations are made for improving 'cost of wind' calculations. The authors are grateful for the sponsorship provided by The Renewable Energy Foundation.

Suggested Citation

  • Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:3202-3215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00217-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    2. Dale, Lewis & Milborrow, David & Slark, Richard & Strbac, Goran, 2004. "Total cost estimates for large-scale wind scenarios in UK," Energy Policy, Elsevier, vol. 32(17), pages 1949-1956, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    2. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    3. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    4. Barthelmie, R.J. & Murray, F. & Pryor, S.C., 2008. "The economic benefit of short-term forecasting for wind energy in the UK electricity market," Energy Policy, Elsevier, vol. 36(5), pages 1687-1696, May.
    5. Commin, Andrew N. & Davidson, Magnus W.H. & Largey, Nicola & Gaffney, Paul P.J. & Braidwood, David W. & Gibb, Stuart W. & McClatchey, John, 2017. "Spatial smoothing of onshore wind: Implications for strategic development in Scotland," Energy Policy, Elsevier, vol. 109(C), pages 36-48.
    6. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    7. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Post-Print hal-03461120, HAL.
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    9. L. Mundaca & H. Moncreiff, 2021. "New Perspectives on Green Energy Defaults," Journal of Consumer Policy, Springer, vol. 44(3), pages 357-383, September.
    10. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    11. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    12. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    13. Denny, Eleanor & O'Mahoney, Amy & Lannoye, Eamonn, 2017. "Modelling the impact of wind generation on electricity market prices in Ireland: An econometric versus unit commitment approach," Renewable Energy, Elsevier, vol. 104(C), pages 109-119.
    14. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    15. Burnett, Dougal & Barbour, Edward & Harrison, Gareth P., 2014. "The UK solar energy resource and the impact of climate change," Renewable Energy, Elsevier, vol. 71(C), pages 333-343.
    16. Xu, M. & Zhuan, X., 2013. "Optimal planning for wind power capacity in an electric power system," Renewable Energy, Elsevier, vol. 53(C), pages 280-286.
    17. Elliston, Ben & Riesz, Jenny & MacGill, Iain, 2016. "What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study," Renewable Energy, Elsevier, vol. 95(C), pages 127-139.
    18. Rakib, M.I. & Evans, S.P. & Clausen, P.D., 2020. "Measured gust events in the urban environment, a comparison with the IEC standard," Renewable Energy, Elsevier, vol. 146(C), pages 1134-1142.
    19. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    20. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:3202-3215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.