IDEAS home Printed from https://ideas.repec.org/a/sae/ratsoc/v3y1991i3p386-389.html
   My bibliography  Save this article

Nash Versus Evolutionary Equilibria and the Folk Theorem

Author

Listed:
  • Richard Jankowski

    (University of Arizona)

Abstract

No abstract is available for this item.

Suggested Citation

  • Richard Jankowski, 1991. "Nash Versus Evolutionary Equilibria and the Folk Theorem," Rationality and Society, , vol. 3(3), pages 386-389, July.
  • Handle: RePEc:sae:ratsoc:v:3:y:1991:i:3:p:386-389
    DOI: 10.1177/1043463191003003009
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1043463191003003009
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1043463191003003009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Axelrod, Robert, 1986. "An Evolutionary Approach to Norms," American Political Science Review, Cambridge University Press, vol. 80(4), pages 1095-1111, December.
    2. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    3. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    4. Selten, Reinhard & Stoecker, Rolf, 1986. "End behavior in sequences of finite Prisoner's Dilemma supergames A learning theory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 47-70, March.
    5. Richard Jankowski, 1990. "Punishment in Iterated Chicken and Prisoner's Dilemma Games," Rationality and Society, , vol. 2(4), pages 449-470, October.
    6. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    7. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-396, March.
    8. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Germano & Peio Zuazo-Garin, 2017. "Bounded rationality and correlated equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(3), pages 595-629, August.
    2. Abhijit Banerjee & Jörgen W. Weibull & Ken Binmore, 1996. "Evolution and Rationality: Some Recent Game-Theoretic Results," International Economic Association Series, in: Beth Allen (ed.), Economics in a Changing World, chapter 4, pages 90-117, Palgrave Macmillan.
    3. Isogai, Shigeki & Shen, Chaohai, 2023. "Multiproduct firm’s reputation and leniency program in multimarket collusion," Economic Modelling, Elsevier, vol. 125(C).
    4. Amanda Friedenberg, 2006. "Can Hidden Variables Explain Correlation? (joint with Adam Brandenburger)," Theory workshop papers 815595000000000005, UCLA Department of Economics.
    5. Hillas, John & Samet, Dov, 2022. "Non-Bayesian correlated equilibrium as an expression of non-Bayesian rationality," Games and Economic Behavior, Elsevier, vol. 135(C), pages 1-15.
    6. Ben-Porath, Elchanan, 1992. "Rationality, Nash Equilibrium and Backward Induction in Perfect Information Games," Foerder Institute for Economic Research Working Papers 275567, Tel-Aviv University > Foerder Institute for Economic Research.
    7. Adam Brandenburger & Amanda Friedenberg, 2014. "Intrinsic Correlation in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 4, pages 59-111, World Scientific Publishing Co. Pte. Ltd..
    8. Committee, Nobel Prize, 2005. "Robert Aumann's and Thomas Schelling's Contributions to Game Theory: Analyses of Conflict and Cooperation," Nobel Prize in Economics documents 2005-1, Nobel Prize Committee.
    9. Breitmoser, Yves & Tan, Jonathan H.W. & Zizzo, Daniel John, 2014. "On the beliefs off the path: Equilibrium refinement due to quantal response and level-k," Games and Economic Behavior, Elsevier, vol. 86(C), pages 102-125.
    10. Morris, Stephen & Skiadas, Costis, 2000. "Rationalizable Trade," Games and Economic Behavior, Elsevier, vol. 31(2), pages 311-323, May.
    11. D. Abreu & D. Pearce, 2000. "Bargaining, Reputation and Equilibrium Selection in Repeated Games," Princeton Economic Theory Papers 00f2, Economics Department, Princeton University.
    12. R. J. Aumann & J. H. Dreze, 2005. "When All is Said and Done, How Should You Play and What Should You Expect?," Discussion Paper Series dp387, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    13. Lorenzo Bastianello & Mehmet S. Ismail, 2022. "Rationality and correctness in n-player games," Papers 2209.09847, arXiv.org, revised Dec 2023.
    14. Robin Cubitt & Robert Sugden, 2005. "Common reasoning in games: a resolution of the paradoxes of ‘common knowledge of rationality’," Discussion Papers 2005-17, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    15. Tang, Qianfeng, 2015. "Interim partially correlated rationalizability," Games and Economic Behavior, Elsevier, vol. 91(C), pages 36-44.
    16. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    17. Shyam NMI Sunder, 2001. "Knowing What Others Know: Common Knowledge, Accounting, and Capital Markets," Yale School of Management Working Papers ysm213, Yale School of Management.
    18. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    19. Anthony Fai-Tong Chung, 2004. "Coalition-Stable Equilibria in Repeated Games," Econometric Society 2004 North American Summer Meetings 581, Econometric Society.
    20. Christian Bach & Andrés Perea, 2014. "Utility proportional beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 881-902, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:ratsoc:v:3:y:1991:i:3:p:386-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.