IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v91y2015icp36-44.html
   My bibliography  Save this article

Interim partially correlated rationalizability

Author

Listed:
  • Tang, Qianfeng

Abstract

We formalize a solution concept called interim partially correlated rationalizability (IPCR), which was implicitly discussed in both Ely and Peski (2006) and Dekel et al. (2007). IPCR allows for interim correlations, i.e., correlations that depend on opponents' types but not on the state of nature. As a direct extension of Ely and Peski's main result, we show that hierarchies of beliefs over conditional beliefs are necessary and sufficient for the identification of IPCR. We use new proof techniques that better illustrate the connection between higher order beliefs and interim rationalizability.

Suggested Citation

  • Tang, Qianfeng, 2015. "Interim partially correlated rationalizability," Games and Economic Behavior, Elsevier, vol. 91(C), pages 36-44.
  • Handle: RePEc:eee:gamebe:v:91:y:2015:i:c:p:36-44
    DOI: 10.1016/j.geb.2015.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825615000615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2015.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Françoise Forges, 2006. "Correlated Equilibrium in Games with Incomplete Information Revisited," Theory and Decision, Springer, vol. 61(4), pages 329-344, December.
    2. Liu, Qingmin, 2009. "On redundant types and Bayesian formulation of incomplete information," Journal of Economic Theory, Elsevier, vol. 144(5), pages 2115-2145, September.
    3. Bergemann, Dirk & Morris, Stephen, 2016. "Bayes correlated equilibrium and the comparison of information structures in games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    4. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    5. , & , & ,, 2006. "Topologies on types," Theoretical Economics, Econometric Society, vol. 1(3), pages 275-309, September.
    6. , C. & ,, 2006. "Hierarchies of belief and interim rationalizability," Theoretical Economics, Econometric Society, vol. 1(1), pages 19-65, March.
    7. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41, World Scientific Publishing Co. Pte. Ltd..
    8. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    9. Lehrer, Ehud & Rosenberg, Dinah & Shmaya, Eran, 2013. "Garbling of signals and outcome equivalence," Games and Economic Behavior, Elsevier, vol. 81(C), pages 179-191.
    10. Liu, Qingmin, 2015. "Correlation and common priors in games with incomplete information," Journal of Economic Theory, Elsevier, vol. 157(C), pages 49-75.
    11. Adam Brandenburger & Amanda Friedenberg, 2014. "Intrinsic Correlation in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 4, pages 59-111, World Scientific Publishing Co. Pte. Ltd..
    12. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    13. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    14. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    15. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    16. MERTENS, Jean-François & ZAMIR, Shmuel, 1985. "Formulation of Bayesian analysis for games with incomplete information," LIDAM Reprints CORE 608, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Adam Brandenburger & Eddie Dekel, 2014. "Rationalizability and Correlated Equilibria," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 3, pages 43-57, World Scientific Publishing Co. Pte. Ltd..
    18. Tang, Qianfeng, 2015. "Hierarchies of beliefs and the belief-invariant Bayesian solution," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 111-116.
    19. Lehrer, Ehud & Rosenberg, Dinah & Shmaya, Eran, 2010. "Signaling and mediation in games with common interests," Games and Economic Behavior, Elsevier, vol. 68(2), pages 670-682, March.
    20. Tang, Qianfeng, 2010. "The Bayesian Solution and Hierarchies of Beliefs," MPRA Paper 26811, University Library of Munich, Germany.
    21. FORGES , Françoise, 1993. "Five Legitimate Definitions of Correlated Equilibrium in Games with Incomplete Information," LIDAM Discussion Papers CORE 1993009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    22. repec:dau:papers:123456789/157 is not listed on IDEAS
    23. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Qianfeng, 2015. "Hierarchies of beliefs and the belief-invariant Bayesian solution," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 111-116.
    2. Tang, Qianfeng, 2010. "The Bayesian Solution and Hierarchies of Beliefs," MPRA Paper 26811, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Qianfeng, 2015. "Hierarchies of beliefs and the belief-invariant Bayesian solution," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 111-116.
    2. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    3. Fabrizio Germano & Peio Zuazo-Garin, 2017. "Bounded rationality and correlated equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(3), pages 595-629, August.
    4. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    5. Bergemann, Dirk & Morris, Stephen, 2017. "Belief-free rationalizability and informational robustness," Games and Economic Behavior, Elsevier, vol. 104(C), pages 744-759.
    6. Bergemann, Dirk & Morris, Stephen, 2016. "Bayes correlated equilibrium and the comparison of information structures in games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    7. Liu, Qingmin, 2009. "On redundant types and Bayesian formulation of incomplete information," Journal of Economic Theory, Elsevier, vol. 144(5), pages 2115-2145, September.
    8. Takashi Ui & Stephen Morris, 2020. "Incomplete Information Robustness," Working Papers on Central Bank Communication 019, University of Tokyo, Graduate School of Economics.
    9. Liu, Qingmin, 2015. "Correlation and common priors in games with incomplete information," Journal of Economic Theory, Elsevier, vol. 157(C), pages 49-75.
    10. Adam Brandenburger & Amanda Friedenberg, 2014. "Intrinsic Correlation in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 4, pages 59-111, World Scientific Publishing Co. Pte. Ltd..
    11. Arnaud Wolff, 2019. "On the Function of Beliefs in Strategic Social Interactions," Working Papers of BETA 2019-41, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    12. Ziegler, Gabriel, 2022. "Informational robustness of common belief in rationality," Games and Economic Behavior, Elsevier, vol. 132(C), pages 592-597.
    13. Amanda Friedenberg & H. Jerome Keisler, 2021. "Iterated dominance revisited," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(2), pages 377-421, September.
    14. Battigalli Pierpaolo & Di Tillio Alfredo & Grillo Edoardo & Penta Antonio, 2011. "Interactive Epistemology and Solution Concepts for Games with Asymmetric Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 11(1), pages 1-40, March.
    15. Françoise Forges, 2006. "Correlated Equilibrium in Games with Incomplete Information Revisited," Theory and Decision, Springer, vol. 61(4), pages 329-344, December.
    16. Guilhem Lecouteux, 2018. "Bayesian game theorists and non-Bayesian players," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 25(6), pages 1420-1454, November.
    17. Battigalli, Pierpaolo & Bonanno, Giacomo, 1999. "Recent results on belief, knowledge and the epistemic foundations of game theory," Research in Economics, Elsevier, vol. 53(2), pages 149-225, June.
    18. Perea, Andrés, 2022. "Common belief in rationality in games with unawareness," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 11-30.
    19. De Magistris, Enrico, 2024. "Incomplete preferences or incomplete information? On Rationalizability in games with private values," Games and Economic Behavior, Elsevier, vol. 144(C), pages 126-140.
    20. Weinstein, Jonathan & Yildiz, Muhamet, 2017. "Interim correlated rationalizability in infinite games," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 82-87.

    More about this item

    Keywords

    Games with incomplete information; Rationalizability; Hierarchies of beliefs;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:91:y:2015:i:c:p:36-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.