IDEAS home Printed from https://ideas.repec.org/a/sae/metjou/v15y2016i2p109-114.html
   My bibliography  Save this article

On some aspects of Maximum Severity of Ruin

Author

Listed:
  • Palash Ranjan Das
  • Tripti Chakrabarti

Abstract

The authors of this article engage ruin theory as a mathematical basis for quantifying the financial risks in insurance industry. Considering a classical risk model with dividend barrier, it is calibrated to obtain the maximum probability of ruin when the claim amount distribution is either exponential or Erlangian. It is to be noted that for numerical evaluation, the premium loading factor is taken to be 20 per cent in both the cases. In order to ensure fair comparison, exponential and Erlangian parameters have been chosen in such a way that their mean and the expected total claims are same for both the distributions over a given time interval. Ultimately, it is generalized that the classical risk model by considering a renewal risk model can be used to find an expression for the maximum severity of ruin in the insurance industry.

Suggested Citation

  • Palash Ranjan Das & Tripti Chakrabarti, 2016. "On some aspects of Maximum Severity of Ruin," Metamorphosis: A Journal of Management Research, , vol. 15(2), pages 109-114, December.
  • Handle: RePEc:sae:metjou:v:15:y:2016:i:2:p:109-114
    DOI: 10.1177/0972622516675980
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0972622516675980
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0972622516675980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hans Gerber & Elias Shiu, 2005. "The Time Value of Ruin in a Sparre Andersen Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 49-69.
    2. K. K. Thampi & M. J. Jacob & N. Raju, 2007. "Barrier Probabilities And Maximum Severity Of Ruin For A Renewal Risk Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(05), pages 837-846.
    3. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    4. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    2. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    3. Lysa Porth & Milton Boyd & Jeffrey Pai, 2016. "Reducing Risk Through Pooling and Selective Reinsurance Using Simulated Annealing: An Example from Crop Insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 41(2), pages 163-191, September.
    4. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    5. Jing Wang & Zbigniew Palmowski & Corina Constantinescu, 2021. "How Much We Gain by Surplus-Dependent Premiums—Asymptotic Analysis of Ruin Probability," Risks, MDPI, vol. 9(9), pages 1-17, August.
    6. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2010. "An elementary approach to discrete models of dividend strategies," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 109-116, February.
    7. Lysa Porth & Milton Boyd & Jeffrey Pai, 2016. "Reducing Risk Through Pooling and Selective Reinsurance Using Simulated Annealing: An Example from Crop Insurance," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 41(2), pages 163-191, September.
    8. Georgios Psarrakos, 2015. "On the Integrated Tail of the Deficit in the Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 497-513, June.
    9. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    10. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    11. Schmidli, Hanspeter, 2010. "On the Gerber-Shiu function and change of measure," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 3-11, February.
    12. Psarrakos, Georgios, 2008. "Tail bounds for the distribution of the deficit in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 197-202, October.
    13. Afonso, Lourdes B. & Cardoso, Rui M.R. & Egídio dos Reis, Alfredo D., 2013. "Dividend problems in the dual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 906-918.
    14. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    15. Hailiang Yang, 2000. "An Integrated Risk Management Method: VaR Approach," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 201-219, September.
    16. Zeng, Xudong, 2010. "Optimal reinsurance with a rescuing procedure," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 397-405, April.
    17. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    18. Das, S. & Kratz, M., 2012. "Alarm system for insurance companies: A strategy for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 53-65.
    19. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.
    20. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:metjou:v:15:y:2016:i:2:p:109-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.