IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i2d10.1007_s11009-013-9381-4.html
   My bibliography  Save this article

On the Integrated Tail of the Deficit in the Renewal Risk Model

Author

Listed:
  • Georgios Psarrakos

    (University of Piraeus)

Abstract

Let G(x, y) be the distribution of the deficit at the time of ruin in the renewal risk model. In this paper, we derive a geometric convolution representation for a function related to the integrated tail of the deficit. This integrated tail is a generalization of the stop loss-premium of the ruin probability, and the proposed convolution is a generalization of the equilibrium distribution of a compound geometric distribution (probability of non-ruin).

Suggested Citation

  • Georgios Psarrakos, 2015. "On the Integrated Tail of the Deficit in the Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 497-513, June.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:2:d:10.1007_s11009-013-9381-4
    DOI: 10.1007/s11009-013-9381-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9381-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9381-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Psarrakos, Georgios, 2009. "A note on convolutions of compound geometric distributions," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1231-1237, May.
    2. De Vylder, F. & Goovaerts, M., 1984. "Bounds for classical ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 3(2), pages 121-131, April.
    3. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    4. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    5. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    6. Hesselager, Ole, 1998. "Closure properties of some partial orderings under mixing," Insurance: Mathematics and Economics, Elsevier, vol. 22(2), pages 163-170, June.
    7. Yebin Cheng & Qihe Tang, 2003. "Moments of the Surplus before Ruin and the Deficit at Ruin in the Erlang(2) Risk Process," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(1), pages 1-12.
    8. Dickson, D. C. M., 2001. "Lundberg Approximations for Compound Distributions with Insurance Applications. By G. E. Willmot and X. S. Lin. (Springer, 2000)," British Actuarial Journal, Cambridge University Press, vol. 7(4), pages 690-691, October.
    9. Cai, Jun & Garrido, Jose, 1998. "Aging properties and bounds for ruin probabilities and stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 23(1), pages 33-43, October.
    10. Vaios Dermitzakis & Susan M. Pitts & Konstadinos Politis, 2010. "Lundberg-type Bounds and Asymptotics for the Moments of the Time to Ruin," Methodology and Computing in Applied Probability, Springer, vol. 12(1), pages 155-175, March.
    11. Hans Gerber & Elias Shiu, 2005. "The Time Value of Ruin in a Sparre Andersen Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 49-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psarrakos, Georgios, 2008. "Tail bounds for the distribution of the deficit in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 197-202, October.
    2. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    3. Chadjiconstantinidis, Stathis & Politis, Konstadinos, 2007. "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 41-52, July.
    4. Politis, Konstadinos, 2005. "Bounds for the probability and severity of ruin in the Sparre Andersen model," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 165-177, April.
    5. Schmidli, Hanspeter, 2010. "On the Gerber-Shiu function and change of measure," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 3-11, February.
    6. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    7. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    8. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    9. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    10. Drekic, Steve & Stafford, James E. & Willmot, Gordon E., 2004. "Symbolic calculation of the moments of the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 109-120, February.
    11. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    12. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    13. Chadjiconstantinidis, Stathis & Xenos, Panos, 2022. "Refinements of bounds for tails of compound distributions and ruin probabilities," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    14. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    15. Vaios Dermitzakis & Susan M. Pitts & Konstadinos Politis, 2010. "Lundberg-type Bounds and Asymptotics for the Moments of the Time to Ruin," Methodology and Computing in Applied Probability, Springer, vol. 12(1), pages 155-175, March.
    16. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    17. Olena Ragulina & Jonas Šiaulys, 2020. "Upper Bounds and Explicit Formulas for the Ruin Probability in the Risk Model with Stochastic Premiums and a Multi-Layer Dividend Strategy," Mathematics, MDPI, vol. 8(11), pages 1-35, October.
    18. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    19. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    20. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:2:d:10.1007_s11009-013-9381-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.