IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v44y2024i7p802-810.html
   My bibliography  Save this article

Methods to Quantify the Importance of Parameters for Model Updating and Distributional Adaptation

Author

Listed:
  • David Glynn

    (Centre for Health Economics, University of York, York, UK)

  • Susan Griffin

    (Centre for Health Economics, University of York, York, UK)

  • Nils Gutacker

    (Centre for Health Economics, University of York, York, UK)

  • Simon Walker

    (Centre for Health Economics, University of York, York, UK)

Abstract

Purpose Decision models are time-consuming to develop; therefore, adapting previously developed models for new purposes may be advantageous. We provide methods to prioritize efforts to 1) update parameter values in existing models and 2) adapt existing models for distributional cost-effectiveness analysis (DCEA). Methods Methods exist to assess the influence of different input parameters on the results of a decision models, including value of information (VOI) and 1-way sensitivity analysis (OWSA). We apply 1) VOI to prioritize searches for additional information to update parameter values and 2) OWSA to prioritize searches for parameters that may vary by socioeconomic characteristics. We highlight the assumptions required and propose metrics that quantify the extent to which parameters in a model have been updated or adapted. We provide R code to quickly carry out the analysis given inputs from a probabilistic sensitivity analysis (PSA) and demonstrate our methods using an oncology case study. Results In our case study, updating 2 of 21 probabilistic model parameters addressed 71.5% of the total VOI and updating 3 addressed approximately 100% of the uncertainty. Our proposed approach suggests that these are the 3 parameters that should be prioritized. For model adaptation for DCEA, 46.3% of the total OWSA variation came from a single parameter, while the top 10 input parameters were found to account for more than 95% of the total variation, suggesting efforts should be aimed toward these. Conclusions These methods offer a systematic approach to guide research efforts in updating models with new data or adapting models to undertake DCEA. The case study demonstrated only very small gains from updating more than 3 parameters or adapting more than 10 parameters. Highlights It can require considerable analyst time to search for evidence to update a model or to adapt a model to take account of equity concerns. In this article, we provide a quantitative method to prioritze parameters to 1) update existing models to reflect potential new evidence and 2) adapt existing models to estimate distributional outcomes. We define metrics that quantify the extent to which the parameters in a model have been updated or adapted. We provide R code that can quickly rank parameter importance and calculate quality metrics using only the results of a standard probabilistic sensitivity analysis.

Suggested Citation

  • David Glynn & Susan Griffin & Nils Gutacker & Simon Walker, 2024. "Methods to Quantify the Importance of Parameters for Model Updating and Distributional Adaptation," Medical Decision Making, , vol. 44(7), pages 802-810, October.
  • Handle: RePEc:sae:medema:v:44:y:2024:i:7:p:802-810
    DOI: 10.1177/0272989X241262037
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X241262037
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X241262037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hawre Jalal & Bryan Dowd & François Sainfort & Karen M. Kuntz, 2013. "Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results," Medical Decision Making, , vol. 33(7), pages 880-890, October.
    2. Susan Griffin & Nicky J. Welton & Karl Claxton, 2010. "Exploring the Research Decision Space: The Expected Value of Information for Sequential Research Designs," Medical Decision Making, , vol. 30(2), pages 155-162, March.
    3. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    2. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    3. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    4. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    5. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    6. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    7. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    8. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    9. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    10. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    11. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    12. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    13. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    14. Martin Hoyle, 2008. "Future Drug Prices and Cost-Effectiveness Analyses," PharmacoEconomics, Springer, vol. 26(7), pages 589-602, July.
    15. Bauer, Annette & Knapp, Martin & Alvi, Mohsin & Chaudhry, Nasim & Gregoire, Alain & Malik, Abid & Sikander, Siham & Tayyaba, Kiran & Wagas, Ahmed & Husain, Nusrat, 2024. "Economic costs of perinatal depression and anxiety in a lower-middle income country: Pakistan," LSE Research Online Documents on Economics 122650, London School of Economics and Political Science, LSE Library.
    16. Aris Angelis & Huseyin Naci & Allan Hackshaw, 2020. "Recalibrating Health Technology Assessment Methods for Cell and Gene Therapies," PharmacoEconomics, Springer, vol. 38(12), pages 1297-1308, December.
    17. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    18. Neily Zakiyah & Antoinette D I van Asselt & Frank Roijmans & Maarten J Postma, 2016. "Economic Evaluation of Family Planning Interventions in Low and Middle Income Countries; A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    19. Billingsley Kaambwa & Julie Ratcliffe, 2018. "Predicting EuroQoL 5 Dimensions 5 Levels (EQ-5D-5L) Utilities from Older People’s Quality of Life Brief Questionnaire (OPQoL-Brief) Scores," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 11(1), pages 39-54, February.
    20. Billingsley Kaambwa & Gang Chen & Julie Ratcliffe & Angelo Iezzi & Aimee Maxwell & Jeff Richardson, 2017. "Mapping Between the Sydney Asthma Quality of Life Questionnaire (AQLQ-S) and Five Multi-Attribute Utility Instruments (MAUIs)," PharmacoEconomics, Springer, vol. 35(1), pages 111-124, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:44:y:2024:i:7:p:802-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.