IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v43y2023i3p350-361.html
   My bibliography  Save this article

Optimal Epidemic Control under Uncertainty: Tradeoffs between Information Collection and Other Actions

Author

Listed:
  • Julien Flaig

    (Epidemiology and Modelling of Infectious Diseases (EPIMOD), Lyon, France)

  • Nicolas Houy

    (University of Lyon, Lyon, France
    CNRS, GATE Lyon Saint-Etienne, France)

Abstract

Background Recent epidemics and measures taken to control them—through vaccination or other actions—have highlighted the role and importance of uncertainty in public health. There is generally a tradeoff between information collection and other uses of resources. Whether this tradeoff is solved explicitly or implicitly, the concept of value of information is central to inform policy makers in an uncertain environment. Method We use a deterministic SIR (susceptible, infectious, recovered) disease emergence and transmission model with vaccination that can be administered as 1 or 2 doses. The disease parameters and vaccine characteristics are uncertain. We study the tradeoffs between information acquisition and 2 other measures: bringing vaccination forward and acquiring more vaccine doses. To do this, we quantify the expected value of perfect information (EVPI) under different constraints faced by public health authorities (i.e., the time of the vaccination campaign implementation and the number of vaccine doses available). Results We discuss the appropriateness of different responses under uncertainty. We show that, in some cases, vaccinating later or with less vaccine doses but more information about the epidemic, and the efficacy of control strategies may bring better results than vaccinating earlier or with more doses and less information, respectively. Conclusion In the present methodological article, we show in an abstract setting how clearly defining and treating the tradeoff between information acquisition and the relaxation of constraints can improve public health decision making. Highlights Uncertainties can seriously hinder epidemic control, but resolving them is costly. Thus, there are tradeoffs between information collection and alternative uses of resources. We use a generic SIR model with vaccination and a value-of-information framework to explore these tradeoffs. We show in which cases vaccinating later with more information about the epidemic and the efficacy of control measures may be better—or not—than vaccinating earlier with less information. We show in which cases vaccinating with fewer vaccine doses and more information about the epidemic and the efficacy of control measures may be better—or not—than vaccinating with more doses and less information.

Suggested Citation

  • Julien Flaig & Nicolas Houy, 2023. "Optimal Epidemic Control under Uncertainty: Tradeoffs between Information Collection and Other Actions," Medical Decision Making, , vol. 43(3), pages 350-361, April.
  • Handle: RePEc:sae:medema:v:43:y:2023:i:3:p:350-361
    DOI: 10.1177/0272989X231158295
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X231158295
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X231158295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    2. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    3. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021. "COVID-19, lockdowns and well-being: Evidence from Google Trends," Journal of Public Economics, Elsevier, vol. 193(C).
    3. Charles A.E. Goodhart & Dimitrios P. Tsomocos & Xuan Wang, 2023. "Support for small businesses amid COVID‐19," Economica, London School of Economics and Political Science, vol. 90(358), pages 612-652, April.
    4. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    5. Graham, James & Ozbilgin, Murat, 2021. "Age, industry, and unemployment risk during a pandemic lockdown," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    6. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    7. Gopal K. Basak & Chandramauli Chakraborty & Pranab Kumar Das, 2021. "Optimal Lockdown Strategy in a Pandemic: An Exploratory Analysis for Covid-19," Papers 2109.02512, arXiv.org.
    8. Laura Alfaro & Anusha Chari & Andrew N. Greenland & Peter K. Schott, 2020. "Aggregate and Firm-Level Stock Returns During Pandemics, in Real Time," NBER Working Papers 26950, National Bureau of Economic Research, Inc.
    9. Chen, Simiao & Jin, Zhangfeng & Bloom, David E., 2020. "Act Early to Prevent Infections and Save Lives: Causal Impact of Diagnostic Efficiency on the COVID-19 Pandemic," IZA Discussion Papers 13749, Institute of Labor Economics (IZA).
    10. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    11. Joshua Bernstein & Alexander W. Richter & Nathaniel A. Throckmorton, 2020. "COVID-19: A View from the Labor Market," Working Papers 2010, Federal Reserve Bank of Dallas.
    12. Alexander Chudik & M. Hashem Pesaran & Alessandro Rebucci, 2020. "Voluntary and Mandatory Social Distancing: Evidence on COVID-19 Exposure Rates from Chinese Provinces and Selected Countries," Globalization Institute Working Papers 382, Federal Reserve Bank of Dallas.
    13. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    14. Jesper Akesson & Sam Ashworth-Hayes & Robert Hahn & Robert Metcalfe & Itzhak Rasooly, 2022. "Fatalism, beliefs, and behaviors during the COVID-19 pandemic," Journal of Risk and Uncertainty, Springer, vol. 64(2), pages 147-190, April.
    15. Hinterlang, Natascha & Moyen, Stephane & Röhe, Oke & Stähler, Nikolai, 2023. "Gauging the effects of the German COVID-19 fiscal stimulus package," European Economic Review, Elsevier, vol. 154(C).
    16. Katarzyna Czech & Michał Wielechowski & Pavel Kotyza & Irena Benešová & Adriana Laputková, 2020. "Shaking Stability: COVID-19 Impact on the Visegrad Group Countries’ Financial Markets," Sustainability, MDPI, vol. 12(15), pages 1-19, August.
    17. Chang Ma & John Rogers & Sili Zhou, 2023. "Modern Pandemics: Recession and Recovery," Journal of the European Economic Association, European Economic Association, vol. 21(5), pages 2098-2130.
    18. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    19. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.
    20. Dirk Krueger & Harald Uhlig & Taojun Xie, 2020. "Macroeconomic Dynamics and Reallocation in an Epidemic," PIER Working Paper Archive 20-015, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:43:y:2023:i:3:p:350-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.