IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947320302346.html
   My bibliography  Save this article

Robustness of cost-effectiveness analyses of cluster randomized trials assuming bivariate normality against skewed cost data

Author

Listed:
  • Manju, Md Abu
  • Candel, Math J.J.M.
  • van Breukelen, Gerard J.P.

Abstract

The bivariate normal multilevel model (MLM) provides a flexible modeling framework for cost-effectiveness analyses (CEAs) alongside cluster randomized trials (CRTs) as well as for sample size calculations of these trials. The bivariate MLM assumes a joint normal distribution for effects and costs, both within (individual level) and between (cluster level) clusters. A typical problem in CEAs is that costs are often associated with right-skewed distributions (e.g., gamma or lognormal), which make it sometimes difficult to justify the modeling of the data based on normality assumptions. The robustness of CEAs of CRTs based on the bivariate normal MLM to non-normal cost distributions at both cluster and individual level are investigated. Normal, gamma, and lognormal distributions are considered using scenarios that differ in the number of clusters, the number of persons per cluster, the covariance parameters of the model, and the level of skewness in the cost data. It is shown that CEA of CRTs, and therefore sample size calculation, based on the bivariate normal MLM, is quite robust against highly skewed costs across a wide range of scenarios. This robustness holds especially with respect to the type I error rate and the power. In terms of bias in variance component estimation and standard errors of fixed effects, large bias can occur in small samples. However, these biases do not appear to translate into any serious deviation of the type I error rate or power from the nominal level.

Suggested Citation

  • Manju, Md Abu & Candel, Math J.J.M. & van Breukelen, Gerard J.P., 2021. "Robustness of cost-effectiveness analyses of cluster randomized trials assuming bivariate normality against skewed cost data," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302346
    DOI: 10.1016/j.csda.2020.107143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302346
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Manca & Nigel Rice & Mark J. Sculpher & Andrew H. Briggs, 2005. "Assessing generalisability by location in trial‐based cost‐effectiveness analysis: the use of multilevel models," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 471-485, May.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Theodoros Mantopoulos & Paul M. Mitchell & Nicky J. Welton & Richard McManus & Lazaros Andronis, 2016. "Choice of statistical model for cost-effectiveness analysis and covariate adjustment: empirical application of prominent models and assessment of their results," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 927-938, November.
    4. Manuel Gomes & Karla Díaz-Ordaz & Richard Grieve & Michael G. Kenward, 2013. "Multiple Imputation Methods for Handling Missing Data in Cost-effectiveness Analyses That Use Data from Hierarchical Studies," Medical Decision Making, , vol. 33(8), pages 1051-1063, November.
    5. Maas, Cora J. M. & Hox, J.J.Joop J., 2004. "The influence of violations of assumptions on multilevel parameter estimates and their standard errors," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 427-440, June.
    6. Manuel Gomes & Edmond S.-W. Ng & Richard Grieve & Richard Nixon & James Carpenter & Simon G. Thompson, 2012. "Developing Appropriate Methods for Cost-Effectiveness Analysis of Cluster Randomized Trials," Medical Decision Making, , vol. 32(2), pages 350-361, March.
    7. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits," Medical Decision Making, , vol. 18(2_suppl), pages 68-80, April.
    8. Md Abu Manju & Math J. J. M. Candel & Gerard J. P. van Breukelen, 2019. "SamP2CeT: an interactive computer program for sample size and power calculation for two-level cost-effectiveness trials," Computational Statistics, Springer, vol. 34(1), pages 47-70, March.
    9. Manuel Gomes & Richard Grieve & Richard Nixon & Edmond S.‐W. Ng & James Carpenter & Simon G. Thompson, 2012. "Methods For Covariate Adjustment In Cost‐Effectiveness Analysis That Use Cluster Randomised Trials," Health Economics, John Wiley & Sons, Ltd., vol. 21(9), pages 1101-1118, September.
    10. Manuel Gomes & Richard Grieve & Richard Nixon & W. J. Edmunds, 2012. "Statistical Methods for Cost-Effectiveness Analyses That Use Data from Cluster Randomized Trials," Medical Decision Making, , vol. 32(1), pages 209-220, January.
    11. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    12. Edmond S.-W. Ng & Richard Grieve & James R. Carpenter, 2013. "Two-stage nonparametric bootstrap sampling with shrinkage correction for clustered data," Stata Journal, StataCorp LP, vol. 13(1), pages 141-164, March.
    13. K. Díaz-Ordaz & Michael G. Kenward & Richard Grieve, 2014. "Handling missing values in cost effectiveness analyses that use data from cluster randomized trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(2), pages 457-474, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Abu Manju & Math J. J. M. Candel & Gerard J. P. van Breukelen, 2019. "SamP2CeT: an interactive computer program for sample size and power calculation for two-level cost-effectiveness trials," Computational Statistics, Springer, vol. 34(1), pages 47-70, March.
    2. Moreno, E. & Girón, F.J. & Martínez, M.L. & Vázquez-Polo, F.J. & Negrín, M.A., 2013. "Optimal treatments in cost-effectiveness analysis in the presence of covariates: Improving patient subgroup definition," European Journal of Operational Research, Elsevier, vol. 226(1), pages 173-182.
    3. Andrew Briggs, 2012. "Statistical Methods for Cost-effectiveness Analysis Alongside Clinical Trials," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 50, Edward Elgar Publishing.
    4. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    5. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.
    6. Wei Li & Nianbo Dong & Rebecca A. Maynard, 2020. "Power Analysis for Two-Level Multisite Randomized Cost-Effectiveness Trials," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 690-718, December.
    7. Jeffrey Hoch & Carolyn Dewa, 2007. "Lessons from Trial-Based Cost-Effectiveness Analyses of Mental Health Interventions," PharmacoEconomics, Springer, vol. 25(10), pages 807-816, October.
    8. Peter Makai & Willemijn Looman & Eddy Adang & René Melis & Elly Stolk & Isabelle Fabbricotti, 2015. "Cost-effectiveness of integrated care in frail elderly using the ICECAP-O and EQ-5D: does choice of instrument matter?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(4), pages 437-450, May.
    9. Basu, Anirban & Jena, Anupam B. & Philipson, Tomas J., 2011. "The impact of comparative effectiveness research on health and health care spending," Journal of Health Economics, Elsevier, vol. 30(4), pages 695-706, July.
    10. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    11. Clarke, Philip M. & Hayes, Alison J., 2009. "Measuring achievement: Changes in risk factors for cardiovascular disease in Australia," Social Science & Medicine, Elsevier, vol. 68(3), pages 552-561, February.
    12. Niklas Zethraeus & Magnus Johannesson & Bengt Jönsson & Mickael Löthgren & Magnus Tambour, 2003. "Advantages of Using the Net-Benefit Approach for Analysing Uncertainty in Economic Evaluation Studies," PharmacoEconomics, Springer, vol. 21(1), pages 39-48, January.
    13. Jordan Amdahl & Jose Diaz & Arati Sharma & Jinhee Park & David Chandiwana & Thomas E Delea, 2017. "Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    14. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    15. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    16. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    17. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    18. Andrew H. Briggs & Bernie J. O'Brien, 2001. "The death of cost‐minimization analysis?," Health Economics, John Wiley & Sons, Ltd., vol. 10(2), pages 179-184, March.
    19. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    20. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.