IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v32y2012i1p209-220.html
   My bibliography  Save this article

Statistical Methods for Cost-Effectiveness Analyses That Use Data from Cluster Randomized Trials

Author

Listed:
  • Manuel Gomes
  • Richard Grieve
  • Richard Nixon
  • W. J. Edmunds

Abstract

Introduction . The best data for cost-effectiveness analyses (CEAs) of group-level interventions often come from cluster randomized trials (CRTs), where randomization is by cluster (e.g., the hospital attended), not by individual. Methods for these CEAs need to recognize both the correlation between costs and outcomes and that these data may be dependent on the cluster. General checklists and methodological guidance for critically appraising CEA ignore these issues. This article develops a new checklist and applies it in a systematic review of CEAs that use CRTs. Methods . The authors developed a checklist for CEAs that use CRTs, informed by a conceptual review of statistical methods. This checklist included criteria such as whether the analysis allowed for both clustering and the correlation between individuals’ costs and outcomes. The authors undertook a systematic literature review of full economic evaluations that used CRTs. The quality of studies was assessed with the new checklist and by the “Drummond checklist.†Results . The authors identified 62 papers that met the inclusion criteria. On average, studies satisfied 9 of the 10 criteria for the checklist but only 20% of criteria for the new checklist. More than 40% of studies adopted statistical methods that completely ignored clustering, and 75% disregarded any correlation between costs and outcomes. Only 4 studies employed appropriate statistical methods that allowed for both clustering and correlation. Conclusions . Most economic evaluations that use data from CRTs ignored clustering or correlation. Statistical methods that address these issues are available, and their use should be encouraged. The new checklist can supplement generic CEA guidelines and highlight where research practice can be improved.

Suggested Citation

  • Manuel Gomes & Richard Grieve & Richard Nixon & W. J. Edmunds, 2012. "Statistical Methods for Cost-Effectiveness Analyses That Use Data from Cluster Randomized Trials," Medical Decision Making, , vol. 32(1), pages 209-220, January.
  • Handle: RePEc:sae:medema:v:32:y:2012:i:1:p:209-220
    DOI: 10.1177/0272989X11407341
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X11407341
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X11407341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Grieve & Richard Nixon & Simon G. Thompson & John Cairns, 2007. "Multilevel models for estimating incremental net benefits in multinational studies," Health Economics, John Wiley & Sons, Ltd., vol. 16(8), pages 815-826, August.
    2. Andrew R. Willan & Andrew H. Briggs & Jeffrey S. Hoch, 2004. "Regression methods for covariate adjustment and subgroup analysis for non‐censored cost‐effectiveness data," Health Economics, John Wiley & Sons, Ltd., vol. 13(5), pages 461-475, May.
    3. Andrew Briggs & Richard Nixon & Simon Dixon & Simon Thompson, 2005. "Parametric modelling of cost data: some simulation evidence," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 421-428, April.
    4. Michael Drummond & Bernie O'Brienm, 1993. "Clinical importance, statistical significance and the assessment of economic and quality‐of‐life outcomes," Health Economics, John Wiley & Sons, Ltd., vol. 2(3), pages 205-212, October.
    5. Nicholas Graves & Damian Walker & Rosalind Raine & Andrew Hutchings & Jennifer A. Roberts, 2002. "Cost data for individual patients included in clinical studies: no amount of statistical analysis can compensate for inadequate costing methods," Health Economics, John Wiley & Sons, Ltd., vol. 11(8), pages 735-739, December.
    6. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    7. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.
    8. Drummond, Michael F. & Sculpher, Mark J. & Torrance, George W. & O'Brien, Bernie J. & Stoddart, Greg L., 2005. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 3, number 9780198529453.
    9. Maiwenn J. Al & Ben A. Van Hout & Bowine C. Michel & Frans F.H. Rutten, 1998. "Sample size calculation in economic evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 7(4), pages 327-335, June.
    10. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430, July.
    11. Richard Grieve & Richard Nixon & Simon G. Thompson & Charles Normand, 2005. "Using multilevel models for assessing the variability of multinational resource use and cost data," Health Economics, John Wiley & Sons, Ltd., vol. 14(2), pages 185-196, February.
    12. Anthony O'Hagan & John W. Stevens, 2003. "Assessing and comparing costs: how robust are the bootstrap and methods based on asymptotic normality?," Health Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 33-49, January.
    13. Glick, Henry A & Doshi, Jalpa A & Sonnad, Seema S & Polsky, Daniel, 2007. "Economic Evaluation in Clinical Trials," OUP Catalogue, Oxford University Press, number 9780198529972.
    14. Andrew H. Briggs, 1999. "A Bayesian approach to stochastic cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 257-261, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Gabrio & Catrin Plumpton & Sube Banerjee & Baptiste Leurent, 2022. "Linear mixed models to handle missing at random data in trial‐based economic evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1276-1287, June.
    2. Manuel Gomes & Richard Grieve & Richard Nixon & Edmond S.‐W. Ng & James Carpenter & Simon G. Thompson, 2012. "Methods For Covariate Adjustment In Cost‐Effectiveness Analysis That Use Cluster Randomised Trials," Health Economics, John Wiley & Sons, Ltd., vol. 21(9), pages 1101-1118, September.
    3. Manju, Md Abu & Candel, Math J.J.M. & van Breukelen, Gerard J.P., 2021. "Robustness of cost-effectiveness analyses of cluster randomized trials assuming bivariate normality against skewed cost data," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Moreno, E. & Girón, F.J. & Martínez, M.L. & Vázquez-Polo, F.J. & Negrín, M.A., 2013. "Optimal treatments in cost-effectiveness analysis in the presence of covariates: Improving patient subgroup definition," European Journal of Operational Research, Elsevier, vol. 226(1), pages 173-182.
    5. Ângela Jornada Ben & Johanna M. Dongen & Mohamed El Alili & Martijn W. Heymans & Jos W. R. Twisk & Janet L. MacNeil-Vroomen & Maartje Wit & Susan E. M. Dijk & Teddy Oosterhuis & Judith E. Bosmans, 2023. "The handling of missing data in trial-based economic evaluations: should data be multiply imputed prior to longitudinal linear mixed-model analyses?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(6), pages 951-965, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodoros Mantopoulos & Paul M. Mitchell & Nicky J. Welton & Richard McManus & Lazaros Andronis, 2016. "Choice of statistical model for cost-effectiveness analysis and covariate adjustment: empirical application of prominent models and assessment of their results," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 927-938, November.
    2. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    3. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    4. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    5. Richard Grieve & John Cairns & Simon G. Thompson, 2010. "Improving costing methods in multicentre economic evaluation: the use of multiple imputation for unit costs," Health Economics, John Wiley & Sons, Ltd., vol. 19(8), pages 939-954, August.
    6. Manuel Gomes & Edmond S.-W. Ng & Richard Grieve & Richard Nixon & James Carpenter & Simon G. Thompson, 2012. "Developing Appropriate Methods for Cost-Effectiveness Analysis of Cluster Randomized Trials," Medical Decision Making, , vol. 32(2), pages 350-361, March.
    7. Noémi Kreif & Richard Grieve & M. Zia Sadique, 2013. "Statistical Methods For Cost‐Effectiveness Analyses That Use Observational Data: A Critical Appraisal Tool And Review Of Current Practice," Health Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 486-500, April.
    8. Aline Gauthier & Andrea Manca & Susan Anton, 2009. "Bayesian Modelling of Healthcare Resource Use in Multinational Randomized Clinical Trials," PharmacoEconomics, Springer, vol. 27(12), pages 1017-1029, December.
    9. Zou, Guang Yong & Taleban, Julia & Huo, Cindy Y., 2009. "Confidence interval estimation for lognormal data with application to health economics," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3755-3764, September.
    10. Thompson, Simon G. & Nixon, Richard M. & Grieve, Richard, 2006. "Addressing the issues that arise in analysing multicentre cost data, with application to a multinational study," Journal of Health Economics, Elsevier, vol. 25(6), pages 1015-1028, November.
    11. Carmen Selva-Sevilla & Elena Conde-Montero & Manuel Gerónimo-Pardo, 2020. "Bayesian Regression Model for a Cost-Utility and Cost-Effectiveness Analysis Comparing Punch Grafting Versus Usual Care for the Treatment of Chronic Wounds," IJERPH, MDPI, vol. 17(11), pages 1-21, May.
    12. Negri­n, Miguel A. & Vázquez-Polo, Francisco-José, 2008. "Incorporating model uncertainty in cost-effectiveness analysis: A Bayesian model averaging approach," Journal of Health Economics, Elsevier, vol. 27(5), pages 1250-1259, September.
    13. Francisco-José Polo & Miguel Negrín & Xavier Badía & Montse Roset, 2005. "Bayesian regression models for cost-effectiveness analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 6(1), pages 45-52, March.
    14. Casey Quinn, 2005. "Generalisable regression methods for costeffectiveness using copulas," Health, Econometrics and Data Group (HEDG) Working Papers 05/13, HEDG, c/o Department of Economics, University of York.
    15. Janneke Grutters & Mark Sculpher & Andrew Briggs & Johan Severens & Math Candel & James Stahl & Dirk Ruysscher & Albert Boer & Bram Ramaekers & Manuela Joore, 2013. "Acknowledging Patient Heterogeneity in Economic Evaluation," PharmacoEconomics, Springer, vol. 31(2), pages 111-123, February.
    16. Gemma E. Shields & Paul Clarkson & Ash Bullement & Warren Stevens & Mark Wilberforce & Tracey Farragher & Arpana Verma & Linda M. Davies, 2024. "Advances in Addressing Patient Heterogeneity in Economic Evaluation: A Review of the Methods Literature," PharmacoEconomics, Springer, vol. 42(7), pages 737-749, July.
    17. Ilias Goranitis & Joanna Coast & Ed Day & Alex Copello & Nick Freemantle & Emma Frew, 2017. "Maximizing Health or Sufficient Capability in Economic Evaluation? A Methodological Experiment of Treatment for Drug Addiction," Medical Decision Making, , vol. 37(5), pages 498-511, July.
    18. Christian E. H. Boehler & Joanne Lord, 2016. "Mind the Gap! A Multilevel Analysis of Factors Related to Variation in Published Cost-Effectiveness Estimates within and between Countries," Medical Decision Making, , vol. 36(1), pages 31-47, January.
    19. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    20. Andrew R. Willan & Matthew E. Kowgier, 2008. "Cost‐effectiveness analysis of a multinational RCT with a binary measure of effectiveness and an interacting covariate," Health Economics, John Wiley & Sons, Ltd., vol. 17(7), pages 777-791, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:32:y:2012:i:1:p:209-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.