IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v56y2000i1p213-219.html
   My bibliography  Save this article

Approximate Bayesian Evaluation of Multiple Treatment Effects

Author

Listed:
  • Peter F. Thall
  • Richard M. Simon
  • Yu Shen

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter F. Thall & Richard M. Simon & Yu Shen, 2000. "Approximate Bayesian Evaluation of Multiple Treatment Effects," Biometrics, The International Biometric Society, vol. 56(1), pages 213-219, March.
  • Handle: RePEc:bla:biomet:v:56:y:2000:i:1:p:213-219
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2000.00213.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Laurence S. Freedman & Mahesh K. B. Parmar, 1994. "Bayesian Approaches to Randomized Trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(3), pages 357-387, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mithat Gönen & Peter H. Westfall & Wesley O. Johnson, 2003. "Bayesian Multiple Testing for Two-Sample Multivariate Endpoints," Biometrics, The International Biometric Society, vol. 59(1), pages 76-82, March.
    2. Peter F. Thall & Leiko H. Wooten & Elizabeth J. Shpall, 2006. "A Geometric Approach to Comparing Treatments for Rapidly Fatal Diseases," Biometrics, The International Biometric Society, vol. 62(1), pages 193-201, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    2. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    3. Paul Gustafson & Nhu D. Le & Refik Saskin, 2001. "Case–Control Analysis with Partial Knowledge of Exposure Misclassification Probabilities," Biometrics, The International Biometric Society, vol. 57(2), pages 598-609, June.
    4. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    5. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    6. Isakov, Leah & Lo, Andrew W. & Montazerhodjat, Vahid, 2019. "Is the FDA too conservative or too aggressive?: A Bayesian decision analysis of clinical trial design," Journal of Econometrics, Elsevier, vol. 211(1), pages 117-136.
    7. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    8. Kruschke, John K. & Liddell, Torrin, 2016. "The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective," OSF Preprints ksfyr, Center for Open Science.
    9. Bradley P. Carlin & James S. Hodges, 1999. "Hierarchical Proportional Hazards Regression Models for Highly Stratified Data," Biometrics, The International Biometric Society, vol. 55(4), pages 1162-1170, December.
    10. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    11. Norman Simón Rodríguez Cano, 2018. "Tendencias actuales en la evaluación de políticas públicas," Ensayos de Economía 17296, Universidad Nacional de Colombia Sede Medellín.
    12. Francisco-José Polo & Miguel Negrín & Xavier Badía & Montse Roset, 2005. "Bayesian regression models for cost-effectiveness analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 6(1), pages 45-52, March.
    13. Danila Azzolina & Giulia Lorenzoni & Silvia Bressan & Liviana Da Dalt & Ileana Baldi & Dario Gregori, 2021. "Handling Poor Accrual in Pediatric Trials: A Simulation Study Using a Bayesian Approach," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    14. Martin E. Backhouse, 1998. "An investment appraisal approach to clinical trial design," Health Economics, John Wiley & Sons, Ltd., vol. 7(7), pages 605-619, November.
    15. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    16. David M. Rindskopf & William R. Shadish & M. H. Clark, 2018. "Using Bayesian Correspondence Criteria to Compare Results From a Randomized Experiment and a Quasi-Experiment Allowing Self-Selection," Evaluation Review, , vol. 42(2), pages 248-280, April.
    17. Nandini Dendukuri & Lawrence Joseph, 2001. "Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests," Biometrics, The International Biometric Society, vol. 57(1), pages 158-167, March.
    18. Miguel A. Negrín & Francisco J. Vázquez-Polo & María Martel & Elías Moreno & Francisco J. Girón, 2010. "Bayesian Variable Selection in Cost-Effectiveness Analysis," IJERPH, MDPI, vol. 7(4), pages 1-20, April.
    19. Leonhard Held, 2020. "A new standard for the analysis and design of replication studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 431-448, February.
    20. Charles F. Manski, 2017. "Improving Clinical Guidelines and Decisions under Uncertainty," NBER Working Papers 23915, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:56:y:2000:i:1:p:213-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.