IDEAS home Printed from https://ideas.repec.org/a/sae/joupea/v58y2021i5p1137-1148.html
   My bibliography  Save this article

Introducing the PeaceKeeping Operations Corpus (PKOC)

Author

Listed:
  • Elio Amicarelli

    (Independent Researcher)

  • Jessica Di Salvatore

    (Department of Politics and International Studies, 2707University of Warwick)

Abstract

Scholars have used United Nations Secretary-General’s (UNSG) reports to extract information on peacekeeping operations (PKOs). As key peacekeeping political documents, UNSG reports contain much more information on the politics of peacekeeping. Furthermore, manually extracting information is costly and time-consuming. By providing a machine-readable collection of the UN Secretary-General’s Reports on PKOs (1994–2020), the PeaceKeeping Operations Corpus (PKOC) offers highly structured and multiformat text data that connect the peace and conflict research community to recent advancements in text-as-data techniques. Besides paving the way for the first quantitative content analyses on PKOs, PKOC speeds up and expands the range of information analysable from these documents and allows researchers to query them in a quicker, systematic and reproducible way. In this article, we discuss PKOC’s core characteristics. As illustration of the innovative potential of PKOC, we show how text-as-data approaches provide more nuanced understanding on PKOs’ evolution toward multidimensionality, both over time and within missions. While last generation PKOs are assumed to be multidimensional, we show how they vary in multidimensionality and how their complexity also changes throughout their life-cycle.

Suggested Citation

  • Elio Amicarelli & Jessica Di Salvatore, 2021. "Introducing the PeaceKeeping Operations Corpus (PKOC)," Journal of Peace Research, Peace Research Institute Oslo, vol. 58(5), pages 1137-1148, September.
  • Handle: RePEc:sae:joupea:v:58:y:2021:i:5:p:1137-1148
    DOI: 10.1177/0022343320978693
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0022343320978693
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0022343320978693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benoit, Kenneth & Conway, Drew & Lauderdale, Benjamin E. & Laver, Michael & Mikhaylov, Slava, 2016. "Crowd-sourced Text Analysis: Reproducible and Agile Production of Political Data," American Political Science Review, Cambridge University Press, vol. 110(2), pages 278-295, May.
    2. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    3. Munger, Kevin & Bonneau, Richard & Nagler, Jonathan & Tucker, Joshua A., 2019. "Elites Tweet to Get Feet Off the Streets: Measuring Regime Social Media Strategies During Protest," Political Science Research and Methods, Cambridge University Press, vol. 7(4), pages 815-834, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Haselmayer & Marcelo Jenny, 2017. "Sentiment analysis of political communication: combining a dictionary approach with crowdcoding," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2623-2646, November.
    2. Keren Weinshall & Lee Epstein, 2020. "Developing High‐Quality Data Infrastructure for Legal Analytics: Introducing the Israeli Supreme Court Database," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(2), pages 416-434, June.
    3. Anton Oleinik, 2024. "A Bayesian index of association: comparison with other measures and performance," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 277-305, February.
    4. Kostovicova Denisa & Kerr Rachel & Sokolić Ivor & Fairey Tiffany & Redwood Henry & Subotić Jelena, 2022. "The “Digital Turn” in Transitional Justice Research: Evaluating Image and Text as Data in the Western Balkans," Comparative Southeast European Studies, De Gruyter, vol. 70(1), pages 24-46, March.
    5. Bernhardt, Lea & Dewenter, Ralf & Thomas, Tobias, 2023. "Measuring partisan media bias in US newscasts from 2001 to 2012," European Journal of Political Economy, Elsevier, vol. 78(C).
    6. Ntentas, Raphael, 2021. "Quantifying political populism and examining the link with economic insecurity: evidence from Greece," LSE Research Online Documents on Economics 112579, London School of Economics and Political Science, LSE Library.
    7. Lin, Annie E. & Young, Jimmy A. & Guarino, Jeannine E., 2022. "Mother-Daughter sexual abuse: An exploratory study of the experiences of survivors of MDSA using Reddit," Children and Youth Services Review, Elsevier, vol. 138(C).
    8. Rybinski, Krzysztof, 2020. "The forecasting power of the multi-language narrative of sell-side research: A machine learning evaluation," Finance Research Letters, Elsevier, vol. 34(C).
    9. Rauh, Christian, 2015. "Communicating supranational governance? The salience of EU affairs in the German Bundestag, 1991–2013," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(1), pages 116-138.
    10. Grajzl, Peter & Murrell, Peter, 2021. "A machine-learning history of English caselaw and legal ideas prior to the Industrial Revolution I: generating and interpreting the estimates," Journal of Institutional Economics, Cambridge University Press, vol. 17(1), pages 1-19, February.
    11. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    12. Julia Seiermann, 2018. "Only Words? How Power in Trade Agreement Texts Affects International Trade Flows," UNCTAD Blue Series Papers 80, United Nations Conference on Trade and Development.
    13. Sami Diaf & Jörg Döpke & Ulrich Fritsche & Ida Rockenbach, 2020. "Sharks and minnows in a shoal of words: Measuring latent ideological positions of German economic research institutes based on text mining techniques," Macroeconomics and Finance Series 202001, University of Hamburg, Department of Socioeconomics.
    14. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    15. Weiss, Max & Zoorob, Michael, 2021. "Political frames of public health crises: Discussing the opioid epidemic in the US Congress," Social Science & Medicine, Elsevier, vol. 281(C).
    16. Maschke, Andreas, 2024. "Talking exports: The representation of Germany's current account in newspaper media," MPIfG Discussion Paper 24/1, Max Planck Institute for the Study of Societies.
    17. Arthur Dyevre & Nicolas Lampach, 2021. "Issue attention on international courts: Evidence from the European Court of Justice," The Review of International Organizations, Springer, vol. 16(4), pages 793-815, October.
    18. Dewenter, Ralf & Dulleck, Uwe & Thomas, Tobias, 2018. "The political coverage index and its application to government capture," Research Papers 6, EcoAustria – Institute for Economic Research.
    19. Pastwa, Anna M. & Shrestha, Prabal & Thewissen, James & Torsin, Wouter, 2021. "Unpacking the black box of ICO white papers: a topic modeling approach," LIDAM Discussion Papers LFIN 2021018, Université catholique de Louvain, Louvain Finance (LFIN).
    20. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joupea:v:58:y:2021:i:5:p:1137-1148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.prio.no/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.