IDEAS home Printed from https://ideas.repec.org/a/sae/jocore/v65y2021i7-8p1427-1453.html
   My bibliography  Save this article

Is Theory Useful for Conflict Prediction? A Response to Beger, Morgan, and Ward

Author

Listed:
  • Robert A. Blair
  • Nicholas Sambanis

Abstract

Beger, Morgan, and Ward (BM&W) call into question the results of our article on forecasting civil wars. They claim that our theoretically-informed model of conflict escalation under-performs more mechanical, inductive alternatives. This claim is false. BM&W’s critiques are misguided or inconsequential, and their conclusions hinge on a minor technical question regarding receiver operating characteristic (ROC) curves: should the curves be smoothed, or should empirical curves be used? BM&W assert that empirical curves should be used and all of their conclusions depend on this subjective modeling choice. We extend our original analysis to show that our theoretically-informed model performs as well as or better than more atheoretical alternatives across a range of performance metrics and robustness specifications. As in our original article, we conclude by encouraging conflict forecasters to treat the value added of theory not as an assumption, but rather as a hypothesis to test.

Suggested Citation

  • Robert A. Blair & Nicholas Sambanis, 2021. "Is Theory Useful for Conflict Prediction? A Response to Beger, Morgan, and Ward," Journal of Conflict Resolution, Peace Science Society (International), vol. 65(7-8), pages 1427-1453, August.
  • Handle: RePEc:sae:jocore:v:65:y:2021:i:7-8:p:1427-1453
    DOI: 10.1177/00220027211026748
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/00220027211026748
    Download Restriction: no

    File URL: https://libkey.io/10.1177/00220027211026748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas Beger & Richard K. Morgan & Michael D. Ward, 2021. "Reassessing the Role of Theory and Machine Learning in Forecasting Civil Conflict," Journal of Conflict Resolution, Peace Science Society (International), vol. 65(7-8), pages 1405-1426, August.
    2. Chiba, Daina & Metternich, Nils W. & Ward, Michael D., 2015. "Every Story Has a Beginning, Middle, and an End (But Not Always in That Order): Predicting Duration Dynamics in a Unified Framework," Political Science Research and Methods, Cambridge University Press, vol. 3(3), pages 515-541, September.
    3. Beger, Andreas & Dorff, Cassy L. & Ward, Michael D., 2016. "Irregular leadership changes in 2014: Forecasts using ensemble, split-population duration models," International Journal of Forecasting, Elsevier, vol. 32(1), pages 98-111.
    4. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    5. Nils W. Metternich & Cassy Dorff & Max Gallop & Simon Weschle & Michael D. Ward, 2013. "Antigovernment Networks in Civil Conflicts: How Network Structures Affect Conflictual Behavior," American Journal of Political Science, John Wiley & Sons, vol. 57(4), pages 892-911, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Xiang, 2017. "Dyadic Effects, Relevance, and the Empirical Assessment of the Kantian Peace," International Interactions, Taylor & Francis Journals, vol. 43(2), pages 248-271, March.
    2. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    3. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    4. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    5. Kikuta,Kyosuke & Hanayama,Manaho, 2023. "Does the Nobel Peace Prize Improve Women’s Rights? Prize and Praise in International Relations," IDE Discussion Papers 903, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    6. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    7. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    8. Samuel Bazzi & Robert A. Blair & Christopher Blattman & Oeindrila Dube & Matthew Gudgeon & Richard Peck, 2022. "The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 764-779, October.
    9. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    10. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    11. Alfred Krzywicki & David Muchlinski & Benjamin E. Goldsmith & Arcot Sowmya, 2022. "From academia to policy makers: a methodology for real-time forecasting of infrequent events," Journal of Computational Social Science, Springer, vol. 5(2), pages 1489-1510, November.
    12. Marco Due~nas & V'ictor Ortiz & Massimo Riccaboni & Francesco Serti, 2021. "Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis," Papers 2104.04570, arXiv.org.
    13. Wei-Hsuan Lo-Ciganic & Julie M Donohue & Eric G Hulsey & Susan Barnes & Yuan Li & Courtney C Kuza & Qingnan Yang & Jeanine Buchanich & James L Huang & Christina Mair & Debbie L Wilson & Walid F Gellad, 2021. "Integrating human services and criminal justice data with claims data to predict risk of opioid overdose among Medicaid beneficiaries: A machine-learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    14. Nica-Avram, Georgiana & Harvey, John & Smith, Gavin & Smith, Andrew & Goulding, James, 2021. "Identifying food insecurity in food sharing networks via machine learning," Journal of Business Research, Elsevier, vol. 131(C), pages 469-484.
    15. Ali J. Ghandour & Huda Hammoud & Samar Al-Hajj, 2020. "Analyzing Factors Associated with Fatal Road Crashes: A Machine Learning Approach," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
    16. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    17. Fisnik Doko & Slobodan Kalajdziski & Igor Mishkovski, 2021. "Credit Risk Model Based on Central Bank Credit Registry Data," JRFM, MDPI, vol. 14(3), pages 1-17, March.
    18. Abouelmagd THM, 2018. "A New Flexible Distribution Based on the Zero Truncated Poisson Distribution: Mathematical Properties and Applications to Lifetime Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 10-16, August.
    19. Bouvatier, Vincent & El Ouardi, Sofiane, 2023. "Credit gaps as banking crisis predictors: A different tune for middle- and low-income countries," Emerging Markets Review, Elsevier, vol. 54(C).
    20. Faith M. Hartley & Aaron E. Maxwell & Rick E. Landenberger & Zachary J. Bortolot, 2022. "Forest Type Differentiation Using GLAD Phenology Metrics, Land Surface Parameters, and Machine Learning," Geographies, MDPI, vol. 2(3), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jocore:v:65:y:2021:i:7-8:p:1427-1453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://pss.la.psu.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.