IDEAS home Printed from https://ideas.repec.org/a/sae/jocore/v22y1978i1p121-141.html
   My bibliography  Save this article

Equilibrium Payoff Configurations for Cooperative Games with Transferability

Author

Listed:
  • Chal Sussangkarn

    (University of California, Berkeley)

Abstract

This paper introduces some concepts of equilibrium payoff configurations for n-person games. They are based on the idea that a coalition must be sufficiently stable to break away from a particular payoff configuration and are extensions of the core and the bargaining sets The question of general existence is dealt with, as well as interesting dynamic properties in three-person games

Suggested Citation

  • Chal Sussangkarn, 1978. "Equilibrium Payoff Configurations for Cooperative Games with Transferability," Journal of Conflict Resolution, Peace Science Society (International), vol. 22(1), pages 121-141, March.
  • Handle: RePEc:sae:jocore:v:22:y:1978:i:1:p:121-141
    DOI: 10.1177/002200277802200108
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/002200277802200108
    Download Restriction: no

    File URL: https://libkey.io/10.1177/002200277802200108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Wilson, Robert, 1971. "Stable coalition proposals in majority-rule voting," Journal of Economic Theory, Elsevier, vol. 3(3), pages 254-271, September.
    3. Reinhard Selten & Klaus G. Schuster, 1968. "Psychological Variables and Coalition-Forming Behaviour," International Economic Association Series, in: Karl Borch & Jan Mossin (ed.), Risk and Uncertainty, chapter 0, pages 221-246, Palgrave Macmillan.
    4. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Morton Davis & Michael Maschler, 1965. "The kernel of a cooperative game," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 12(3), pages 223-259, September.
    6. Charnes, A. & Littlechild, S. C., 1975. "On the formation of unions in n-person games," Journal of Economic Theory, Elsevier, vol. 10(3), pages 386-402, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Andrew Michener & Daniel J. Myers, 1998. "Probabilistic Coalition Structure Theories," Journal of Conflict Resolution, Peace Science Society (International), vol. 42(6), pages 830-860, December.
    2. Montero, M.P., 2002. "Two-Stage Bargaining with Reversible Coalitions : The Case of Apex Games," Other publications TiSEM 7dba0283-bc13-4f2c-8f5e-5, Tilburg University, School of Economics and Management.
    3. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    4. Armando Gomes, "undated". "A Theory of Negotiations and Formation of Coalitions," Rodney L. White Center for Financial Research Working Papers 21-99, Wharton School Rodney L. White Center for Financial Research.
    5. Michel Le Breton & Karine Van Der Straeten, 2017. "Alliances Électorales et Gouvernementales : La Contribution de la Théorie des Jeux Coopératifs à la Science Politique," Revue d'économie politique, Dalloz, vol. 127(4), pages 637-736.
    6. Grabisch, Michel & Sudhölter, Peter, 2018. "On a class of vertices of the core," Games and Economic Behavior, Elsevier, vol. 108(C), pages 541-557.
    7. Maria Montero & Alex Possajennikov, 2021. "An Adaptive Model of Demand Adjustment in Weighted Majority Games," Games, MDPI, vol. 13(1), pages 1-17, December.
    8. Pedro Calleja & Francesc Llerena & Peter Sudhölter, 2020. "Monotonicity and Weighted Prenucleoli: A Characterization Without Consistency," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1056-1068, August.
    9. Meinhardt, Holger Ingmar, 2020. "On the Replication of the Pre-Kernel and Related Solutions," MPRA Paper 102676, University Library of Munich, Germany.
    10. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, J., 1998. "Characterizations of the Egalitarian Solution for Convex Games," Other publications TiSEM 0a127ca4-b1ae-47e7-a135-3, Tilburg University, School of Economics and Management.
    11. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
    12. Toru Hokari & Yukihiko Funaki & Peter Sudhölter, 2020. "Consistency, anonymity, and the core on the domain of convex games," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 187-197, December.
    13. Yoshio Kamijo, 2013. "The collective value: a new solution for games with coalition structures," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 572-589, October.
    14. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2021. "Axiomatizations of Dutta-Ray’s egalitarian solution on the domain of convex games," Journal of Mathematical Economics, Elsevier, vol. 95(C).
    15. J. Arin & V. Feltkamp & M. Montero, 2015. "A bargaining procedure leading to the serial rule in games with veto players," Annals of Operations Research, Springer, vol. 229(1), pages 41-66, June.
    16. Rodica Brânzei & Tamás Solymosi & Stef Tijs, 2005. "Strongly essential coalitions and the nucleolus of peer group games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(3), pages 447-460, September.
    17. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    18. Pongou, Roland & Tondji, Jean-Baptiste, 2024. "The reciprocity set," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    19. Junnosuke Shino & Shinichi Ishihara & Shimpei Yamauchi, 2022. "Shapley Mapping and Its Axiomatizations in n -Person Cooperative Interval Games," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    20. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Theo Driessen, 2018. "Compromise for the per Capita Complaint: an optimization CharaCterization of two equalitarian values," Working Papers halshs-01931224, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jocore:v:22:y:1978:i:1:p:121-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://pss.la.psu.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.