IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v45y2020i1p86-107.html
   My bibliography  Save this article

A Scaled Threshold Model for Measuring Extreme Response Style

Author

Listed:
  • Dirk Lubbe
  • Christof Schuster

Abstract

Extreme response style is the tendency of individuals to prefer the extreme categories of a rating scale irrespective of item content. It has been shown repeatedly that individual response style differences affect the reliability and validity of item responses and should, therefore, be considered carefully. To account for extreme response style (ERS) in ordered categorical item responses, it has been proposed to model responder-specific sets of category thresholds in connection with established polytomous item response models. An elegant approach to achieve this is to introduce a responder-specific scaling factor that modifies intervals between thresholds. By individually expanding or contracting intervals between thresholds, preferences for selecting either the outer or inner response categories can be modeled. However, for a responder-specific scaling factor to appropriately account for ERS, there are two important aspects that have not been considered previously and which, if ignored, will lead to questionable model properties. Specifically, the centering of threshold parameters and the type of category probability logit need to be considered carefully. In the present article, a scaled threshold model is proposed, which accounts for these considerations. Instructions on model fitting are given together with SAS PROC NLMIXED program code, and the model’s application and interpretation is demonstrated using simulation studies and two empirical examples.

Suggested Citation

  • Dirk Lubbe & Christof Schuster, 2020. "A Scaled Threshold Model for Measuring Extreme Response Style," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 86-107, February.
  • Handle: RePEc:sae:jedbes:v:45:y:2020:i:1:p:86-107
    DOI: 10.3102/1076998619859541
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998619859541
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998619859541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. Timothy Johnson, 2003. "On the use of heterogeneous thresholds ordinal regression models to account for individual differences in response style," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 563-583, December.
    3. Rossi P. E & Gilula Z. & Allenby G. M, 2001. "Overcoming Scale Usage Heterogeneity: A Bayesian Hierarchical Approach," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 20-31, March.
    4. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy R. Johnson & Daniel M. Bolt, 2010. "On the Use of Factor-Analytic Multinomial Logit Item Response Models to Account for Individual Differences in Response Style," Journal of Educational and Behavioral Statistics, , vol. 35(1), pages 92-114, February.
    2. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    3. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    4. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    5. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    6. Wang, Luming & Finn, Adam, 2014. "A psychometric theory that measures up to marketing reality: An adapted Many Faceted IRT model," Australasian marketing journal, Elsevier, vol. 22(2), pages 93-102.
    7. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    8. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    9. Salzberger, Thomas & Koller, Monika, 2013. "Towards a new paradigm of measurement in marketing," Journal of Business Research, Elsevier, vol. 66(9), pages 1307-1317.
    10. Richard N McNeely & Salissou Moutari & Samuel Arba-Mosquera & Shwetabh Verma & Jonathan E Moore, 2018. "An alternative application of Rasch analysis to assess data from ophthalmic patient-reported outcome instruments," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-32, June.
    11. Francesca DE BATTISTI & Giovanna NICOLINI & Silvia SALINI, 2008. "Methodological overview of Rasch model and application in customer satisfaction survey data," Departmental Working Papers 2008-04, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    12. Lynd Bacon & Peter Lenk, 2012. "Augmenting discrete-choice data to identify common preference scales for inter-subject analyses," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 453-474, December.
    13. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    14. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    15. Piotr Tarka, 2013. "Model of latent profile factor analysis for ordered categorical data," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 171-182, March.
    16. Xiaohui Zheng & Sophia Rabe-Hesketh, 2007. "Estimating parameters of dichotomous and ordinal item response models with gllamm," Stata Journal, StataCorp LP, vol. 7(3), pages 313-333, September.
    17. Ghady El Khoury & Olivier Barbier & Xavier Libouton & Jean-Louis Thonnard & Philippe Lefèvre & Massimo Penta, 2020. "Manual ability in hand surgery patients: Validation of the ABILHAND scale in four diagnostic groups," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    18. David Andrich, 2010. "Sufficiency and Conditional Estimation of Person Parameters in the Polytomous Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 292-308, June.
    19. Glewwe, Paul & Huang, Qiuqiong & Park, Albert, 2017. "Cognitive skills, noncognitive skills, and school-to-work transitions in rural China," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 141-164.
    20. Stefano Noventa & Luca Stefanutti & Giulio Vidotto, 2014. "An Analysis of Item Response Theory and Rasch Models Based on the Most Probable Distribution Method," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 377-402, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:45:y:2020:i:1:p:86-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.