IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v81y2016i3d10.1007_s11336-015-9482-9.html
   My bibliography  Save this article

A New Online Calibration Method for Multidimensional Computerized Adaptive Testing

Author

Listed:
  • Ping Chen

    (Beijing Normal University)

  • Chun Wang

    (University of Minnesota)

Abstract

Multidimensional-Method A (M-Method A) has been proposed as an efficient and effective online calibration method for multidimensional computerized adaptive testing (MCAT) (Chen & Xin, Paper presented at the 78th Meeting of the Psychometric Society, Arnhem, The Netherlands, 2013). However, a key assumption of M-Method A is that it treats person parameter estimates as their true values, thus this method might yield erroneous item calibration when person parameter estimates contain non-ignorable measurement errors. To improve the performance of M-Method A, this paper proposes a new MCAT online calibration method, namely, the full functional MLE-M-Method A (FFMLE-M-Method A). This new method combines the full functional MLE (Jones & Jin in Psychometrika 59:59–75, 1994; Stefanski & Carroll in Annals of Statistics 13:1335–1351, 1985) with the original M-Method A in an effort to correct for the estimation error of ability vector that might otherwise adversely affect the precision of item calibration. Two correction schemes are also proposed when implementing the new method. A simulation study was conducted to show that the new method generated more accurate item parameter estimation than the original M-Method A in almost all conditions.

Suggested Citation

  • Ping Chen & Chun Wang, 2016. "A New Online Calibration Method for Multidimensional Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 674-701, September.
  • Handle: RePEc:spr:psycho:v:81:y:2016:i:3:d:10.1007_s11336-015-9482-9
    DOI: 10.1007/s11336-015-9482-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-015-9482-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-015-9482-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Mislevy & Hua-Hua Chang, 2000. "Does adaptive testing violate local independence?," Psychometrika, Springer;The Psychometric Society, vol. 65(2), pages 149-156, June.
    2. Chun Wang & Hua-Hua Chang, 2011. "Item Selection in Multidimensional Computerized Adaptive Testing—Gaining Information from Different Angles," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 363-384, July.
    3. Ping Chen & Tao Xin & Chun Wang & Hua-Hua Chang, 2012. "Online Calibration Methods for the DINA Model with Independent Attributes in CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 201-222, April.
    4. Lien, Da-Hsiang Donald, 1985. "Moments of truncated bivariate log-normal distributions," Economics Letters, Elsevier, vol. 19(3), pages 243-247.
    5. Daniel Segall, 1996. "Multidimensional adaptive testing," Psychometrika, Springer;The Psychometric Society, vol. 61(2), pages 331-354, June.
    6. Daniel Segall, 2001. "General ability measurement: An application of multidimensional item response theory," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 79-97, March.
    7. Dries Debeer & Janine Buchholz & Johannes Hartig & Rianne Janssen, 2014. "Student, School, and Country Differences in Sustained Test-Taking Effort in the 2009 PISA Reading Assessment," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 502-523, December.
    8. Joris Mulder & Wim Linden, 2009. "Multidimensional Adaptive Testing with Optimal Design Criteria for Item Selection," Psychometrika, Springer;The Psychometric Society, vol. 74(2), pages 273-296, June.
    9. Douglas Jones & Zhiying Jin, 1994. "Optimal sequential designs for on-line item estimation," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 59-75, March.
    10. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    11. Chun Wang, 2014. "Improving Measurement Precision of Hierarchical Latent Traits Using Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 452-477, December.
    12. Robert Mislevy, 1986. "Bayes modal estimation in item response models," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 177-195, June.
    13. Hua-Hua Chang & William Stout, 1993. "The asymptotic posterior normality of the latent trait in an IRT model," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 37-52, March.
    14. Chun Wang & Hua-Hua Chang & Keith Boughton, 2011. "Kullback–Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 13-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.
    2. Ping Chen, 2017. "A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 559-590, October.
    3. Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
    4. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Chen, 2017. "A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 559-590, October.
    2. Hua-Hua Chang, 2015. "Psychometrics Behind Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 1-20, March.
    3. Chun Wang, 2014. "Improving Measurement Precision of Hierarchical Latent Traits Using Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 452-477, December.
    4. Chun Wang & Hua-Hua Chang, 2011. "Item Selection in Multidimensional Computerized Adaptive Testing—Gaining Information from Different Angles," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 363-384, July.
    5. Chun Wang & David J. Weiss & Zhuoran Shang, 2019. "Variable-Length Stopping Rules for Multidimensional Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 749-771, September.
    6. Chun Wang, 2015. "On Latent Trait Estimation in Multidimensional Compensatory Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 428-449, June.
    7. Chun Wang & Hua-Hua Chang & Keith Boughton, 2011. "Kullback–Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 13-39, January.
    8. Lihua Yao, 2012. "Multidimensional CAT Item Selection Methods for Domain Scores and Composite Scores: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 495-523, July.
    9. Zhewen Fan & Chun Wang & Hua-Hua Chang & Jeffrey Douglas, 2012. "Utilizing Response Time Distributions for Item Selection in CAT," Journal of Educational and Behavioral Statistics, , vol. 37(5), pages 655-670, October.
    10. Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
    11. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    12. Edison M. Choe & Jinming Zhang & Hua-Hua Chang, 2018. "Sequential Detection of Compromised Items Using Response Times in Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 650-673, September.
    13. Yang Liu & Jan Hannig & Abhishek Pal Majumder, 2019. "Second-Order Probability Matching Priors for the Person Parameter in Unidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 701-718, September.
    14. Wim Linden & Hao Ren, 2015. "Optimal Bayesian Adaptive Design for Test-Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 263-288, June.
    15. Sandip Sinharay, 2015. "The Asymptotic Distribution of Ability Estimates," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 511-528, October.
    16. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    17. Ogasawara, Haruhiko, 2013. "Asymptotic cumulants of ability estimators using fallible item parameters," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 144-162.
    18. Yang Liu & Ji Seung Yang, 2018. "Interval Estimation of Latent Variable Scores in Item Response Theory," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 259-285, June.
    19. Ying Cheng & Cheng Liu & John Behrens, 2015. "Standard Error of Ability Estimates and the Classification Accuracy and Consistency of Binary Decisions," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 645-664, September.
    20. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:81:y:2016:i:3:d:10.1007_s11336-015-9482-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.