IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v35y2010i6p726-743.html
   My bibliography  Save this article

A Comparison of Strategies for Estimating Conditional DIF

Author

Listed:
  • Tim Moses
  • Jing Miao
  • Neil J. Dorans

Abstract

In this study, the accuracies of four strategies were compared for estimating conditional differential item functioning (DIF), including raw data, logistic regression, log-linear models, and kernel smoothing. Real data simulations were used to evaluate the estimation strategies across six items, DIF and No DIF situations, and four sample size combinations for the reference and focal group data. Results showed that logistic regression was the most recommended strategy in terms of the bias and variability of its estimates. The log-linear models strategy had flexibility advantages, but these advantages only offset the greater variability of its estimates when sample sizes were large. Kernel smoothing was the least accurate of the considered strategies due to estimation problems when the reference and focal groups differed in overall ability.

Suggested Citation

  • Tim Moses & Jing Miao & Neil J. Dorans, 2010. "A Comparison of Strategies for Estimating Conditional DIF," Journal of Educational and Behavioral Statistics, , vol. 35(6), pages 726-743, December.
  • Handle: RePEc:sae:jedbes:v:35:y:2010:i:6:p:726-743
    DOI: 10.3102/1076998610379135
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998610379135
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998610379135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hendrikus Kelderman, 1984. "Loglinear Rasch model tests," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 223-245, June.
    2. J. Ramsay, 1991. "Kernel smoothing approaches to nonparametric item characteristic curve estimation," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 611-630, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henry Santa-Cruz-Espinoza & Gina Chávez-Ventura & Julio Domínguez-Vergara & César Merino-Soto, 2023. "Internal Structure of the Work–Family Conflict Questionnaire (WFCQ) in Teacher Teleworking," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    2. Cees Glas, 1988. "The derivation of some tests for the rasch model from the multinomial distribution," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 525-546, December.
    3. Benjamin Williams, 2019. "Identification of a nonseparable model under endogeneity using binary proxies for unobserved heterogeneity," Quantitative Economics, Econometric Society, vol. 10(2), pages 527-563, May.
    4. Jesper Tijmstra & Herbert Hoijtink & Klaas Sijtsma, 2015. "Evaluating Manifest Monotonicity Using Bayes Factors," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 880-896, December.
    5. Javier Revuelta, 2004. "Analysis of distractor difficulty in multiple-choice items," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 217-234, June.
    6. Leah M. Feuerstahler, 2019. "Metric Transformations and the Filtered Monotonic Polynomial Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 105-123, March.
    7. Clemens Draxler, 2018. "Bayesian conditional inference for Rasch models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 245-262, April.
    8. Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.
    9. Svend Kreiner & Karl Christensen, 2014. "Analyses of Model Fit and Robustness. A New Look at the PISA Scaling Model Underlying Ranking of Countries According to Reading Literacy," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 210-231, April.
    10. Betina Ristorp Andersen & Maria Birkvad Rasmussen & Karl Bang Christensen & Kirsten G Engel & Charlotte Ringsted & Ellen Løkkegaard & Martin G Tolsgaard, 2020. "Making the best of the worst: Care quality during emergency cesarean sections," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-13, February.
    11. Francesco Bartolucci, 2007. "A class of multidimensional IRT models for testing unidimensionality and clustering items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 141-157, June.
    12. Yang Liu & Weimeng Wang, 2022. "Semiparametric Factor Analysis for Item-Level Response Time Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 666-692, June.
    13. Yuguo Chen & Dylan Small, 2005. "Exact tests for the rasch model via sequential importance sampling," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 11-30, March.
    14. Fabrizio Maturo & Francesca Fortuna & Tonio Di Battista, 2019. "Testing Equality of Functions Across Multiple Experimental Conditions for Different Ability Levels in the IRT Context: The Case of the IPRASE TLT 2016 Survey," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 19-39, November.
    15. Clemens Draxler, 2010. "Sample Size Determination for Rasch Model Tests," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 708-724, December.
    16. Fumiko Samejima, 1997. "Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 471-493, December.
    17. Henk Kelderman, 1992. "Computing maximum likelihood estimates of loglinear models from marginal sums with special attention to loglinear item response theory," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 437-450, September.
    18. Svend Kreiner & Karl Christensen, 2011. "Item Screening in Graphical Loglinear Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 228-256, April.
    19. Xueli Xu & Jeff Douglas, 2006. "Computerized adaptive testing under nonparametric IRT models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 121-137, March.
    20. Henk Kelderman & Carl Rijkes, 1994. "Loglinear multidimensional IRT models for polytomously scored items," Psychometrika, Springer;The Psychometric Society, vol. 59(2), pages 149-176, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:35:y:2010:i:6:p:726-743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.