IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v18y2022i3p15501477211062835.html
   My bibliography  Save this article

Artificial intelligence Internet of Things: A new paradigm of distributed sensor networks

Author

Listed:
  • Kah Phooi Seng
  • Li Minn Ang
  • Ericmoore Ngharamike

Abstract

The advances and convergence in sensor, information processing, and communication technologies have shaped the Internet of Things of today. The rapid increase of data and service requirements brings new challenges for Internet of Thing. Emerging technologies and intelligent techniques can play a compelling role in prompting the development of intelligent architectures and services in Internet of Things to form the artificial intelligence Internet of Things. In this article, we give an introduction and review recent developments of artificial intelligence Internet of Things, the various artificial intelligence Internet of Things computational frameworks and highlight the challenges and opportunities for effective deployment of artificial intelligence Internet of Things technology to address complex problems for various applications. This article surveys the recent developments and discusses the convergence of artificial intelligence and Internet of Things from four aspects: (1) architectures, techniques, and hardware platforms for artificial intelligence Internet of Things; (2) sensors, devices, and energy approaches for artificial intelligence Internet of Things; (3) communication and networking for artificial intelligence Internet of Things; and (4) applications for artificial intelligence Internet of Things. The article also discusses the combination of smart sensors, edge computing, and software-defined networks as enabling technologies for the artificial intelligence Internet of Things.

Suggested Citation

  • Kah Phooi Seng & Li Minn Ang & Ericmoore Ngharamike, 2022. "Artificial intelligence Internet of Things: A new paradigm of distributed sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501477211, March.
  • Handle: RePEc:sae:intdis:v:18:y:2022:i:3:p:15501477211062835
    DOI: 10.1177/15501477211062835
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211062835
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211062835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giri Gandu Hallur & Sandeep Prabhu & Avinash Aslekar, 2021. "Entertainment in Era of AI, Big Data & IoT," Springer Books, in: Subhankar Das & Saikat Gochhait (ed.), Digital Entertainment, chapter 0, pages 87-109, Springer.
    2. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Mariusz Kostrzewski & Magdalena Marczewska & Lorna Uden, 2023. "The Internet of Vehicles and Sustainability—Reflections on Environmental, Social, and Corporate Governance," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    2. Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.
    3. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    5. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    6. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    7. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    9. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    11. Panagiotis Michailidis & Paschalis Pelitaris & Christos Korkas & Iakovos Michailidis & Simone Baldi & Elias Kosmatopoulos, 2021. "Enabling Optimal Energy Management with Minimal IoT Requirements: A Legacy A/C Case Study," Energies, MDPI, vol. 14(23), pages 1-25, November.
    12. Tao Lv & Yuehong Lu & Yijie Zhou & Xuemei Liu & Changlong Wang & Yang Zhang & Zhijia Huang & Yanhong Sun, 2022. "Optimal Control of Energy Systems in Net-Zero Energy Buildings Considering Dynamic Costs: A Case Study of Zero Carbon Building in Hong Kong," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    13. Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    15. Farzad Dadras Javan & Italo Aldo Campodonico Avendano & Behzad Najafi & Amin Moazami & Fabio Rinaldi, 2023. "Machine-Learning-Based Prediction of HVAC-Driven Load Flexibility in Warehouses," Energies, MDPI, vol. 16(14), pages 1-15, July.
    16. Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
    17. Raziq Yaqub & Mohamed Ali & Hassan Ali, 2021. "DC Microgrid Utilizing Artificial Intelligence and Phasor Measurement Unit Assisted Inverter," Energies, MDPI, vol. 14(19), pages 1-17, September.
    18. Ibrahim, Charles & Mougharbel, Imad & Kanaan, Hadi Y. & Daher, Nivine Abou & Georges, Semaan & Saad, Maarouf, 2022. "A review on the deployment of demand response programs with multiple aspects coexistence over smart grid platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Senfeng Cen & Jae Hung Yoo & Chang Gyoon Lim, 2022. "Electricity Pattern Analysis by Clustering Domestic Load Profiles Using Discrete Wavelet Transform," Energies, MDPI, vol. 15(4), pages 1-18, February.
    20. Białek, Jakub & Bujalski, Wojciech & Wojdan, Konrad & Guzek, Michał & Kurek, Teresa, 2022. "Dataset level explanation of heat demand forecasting ANN with SHAP," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:18:y:2022:i:3:p:15501477211062835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.