IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i6p1550147718781454.html
   My bibliography  Save this article

Efficient sensor network planning based on approximate potential games

Author

Listed:
  • Su-Jin Lee
  • Young-Jin Park
  • Han-Lim Choi

Abstract

This article addresses information-based sensing point selection from a set of possible sensing locations. A potential game approach has been applied to addressing distributed decision making for cooperative sensor planning. For a large sensor network, the local utility function for an agent is difficult to compute, because the utility function depends on the other agents’ decisions, while each sensing agent is inherently faced with limitations in both its communication and computational capabilities. Accordingly, we propose an approximation method for a local utility function to accommodate limitations in information gathering and processing, using only a part of the decisions of other agents. The error induced by the approximation is also analyzed, and to keep the error small, we propose a selection algorithm that chooses the neighbor set for each agent in a greedy way. The selection algorithm is based on the correlation between one agent’s and the other agents’ measurement selection. Furthermore, we show that a game with an approximate utility function has an ϵ − equilibrium and the set of the equilibria include the Nash equilibrium of the original potential game. We demonstrate the validity of our approximation method through two numerical examples on simplified weather forecasting and multi-target tracking.

Suggested Citation

  • Su-Jin Lee & Young-Jin Park & Han-Lim Choi, 2018. "Efficient sensor network planning based on approximate potential games," International Journal of Distributed Sensor Networks, , vol. 14(6), pages 15501477187, June.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:6:p:1550147718781454
    DOI: 10.1177/1550147718781454
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718781454
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718781454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    3. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    4. Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
    5. Ozan Candogan & Ishai Menache & Asuman Ozdaglar & Pablo A. Parrilo, 2011. "Flows and Decompositions of Games: Harmonic and Potential Games," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 474-503, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    2. Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
    3. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    4. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    5. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    6. Mario Bravo, 2016. "An Adjusted Payoff-Based Procedure for Normal Form Games," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1469-1483, November.
    7. Philip N. Brown & Joshua H. Seaton & Jason R. Marden, 2023. "Robust Networked Multiagent Optimization: Designing Agents to Repair Their Own Utility Functions," Dynamic Games and Applications, Springer, vol. 13(1), pages 187-207, March.
    8. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    9. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    10. ,, 2011. "Manipulative auction design," Theoretical Economics, Econometric Society, vol. 6(2), May.
    11. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    12. Dieter Balkenborg & Rosemarie Nagel, 2016. "An Experiment on Forward vs. Backward Induction: How Fairness and Level k Reasoning Matter," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 378-408, August.
    13. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    14. Siegfried Berninghaus & Werner Güth & M. Vittoria Levati & Jianying Qiu, 2006. "Satisficing in sales competition: experimental evidence," Papers on Strategic Interaction 2006-32, Max Planck Institute of Economics, Strategic Interaction Group.
    15. Ball, Richard, 2017. "Violations of monotonicity in evolutionary models with sample-based beliefs," Economics Letters, Elsevier, vol. 152(C), pages 100-104.
    16. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    17. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    18. Yoo, Seung Han, 2014. "Learning a population distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 188-201.
    19. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    20. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:6:p:1550147718781454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.