IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i11p1550147718815845.html
   My bibliography  Save this article

Automatic incident detection in smart city using multiple traffic flow parameters via V2X communication

Author

Listed:
  • Zafar Iqbal
  • Majid Iqbal Khan

Abstract

Recent research trends in intelligent transportation system are focused toward developing automatic incident detection systems to deal with on-road incidents including accidents, traffic congestion, and jamming which cause damage to precious human lives and financial losses. Most of the existing automatic incident detection systems use fixed detectors to detect traffic parameters like occupancy, speed, and lane change information. These systems are prone to delay, inaccuracy, and false alarms during data collection and processing due to line of sight and short-range communication, weather conditions, road repairing, and driver’s driving patterns. Moreover, these systems are designed for freeways/highways and are less compatible with city scenario due to its highly variable traffic density factor. To overcome these deficiencies, an effective and robust approach for automatic incident detection for smart city is developed using smart roads in association with roadside units for data collection and data processing, respectively. The incident confidence factor of the algorithm is based not only on speed and lane change parameters but also on acceleration, orientation, and deviation factors that are integrated to cope with peak/non-peak traffic hours. The integration of multiple parameters increases the incident belief factor and hence the accuracy of incident detection. The complete algorithm is mathematically described using the notions of set theory and then formal analysis assures that the algorithm would be less susceptible to runtime and logical errors during simulations.

Suggested Citation

  • Zafar Iqbal & Majid Iqbal Khan, 2018. "Automatic incident detection in smart city using multiple traffic flow parameters via V2X communication," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718815845
    DOI: 10.1177/1550147718815845
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718815845
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718815845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. JungHoon Kim & Byungsun Yang, 2021. "A Smart City Service Business Model: Focusing on Transportation Services," Sustainability, MDPI, vol. 13(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunze Wang & Ranran Xu & Ke Zhang, 2022. "A Car-Following Model for Mixed Traffic Flows in Intelligent Connected Vehicle Environment Considering Driver Response Characteristics," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    2. Meng, Dongli & Song, Guohua & Huang, Jianchang & Lu, Hongyu & Wu, Yizheng & Yu, Lei, 2024. "Car-following model considering jerk-constrained acceleration stochastic process for emission estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    3. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    4. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    5. Zhou, Tong & Chen, Dong & Zheng, Linjiang & Liu, Weining & He, Yuchu & Liu, Zhongcheng, 2018. "Feedback-based control for coupled map car-following model with time delays on basis of linear discrete-time system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 174-185.
    6. Treiber, Martin & Kesting, Arne, 2011. "Evidence of convective instability in congested traffic flow: A systematic empirical and theoretical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1362-1377.
    7. Xiao Xiao & Yunlong Zhang & Xiubin Bruce Wang & Shu Yang & Tianyi Chen, 2021. "Hierarchical Longitudinal Control for Connected and Automated Vehicles in Mixed Traffic on a Signalized Arterial," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    8. Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    9. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    10. Kang, Qiang & Jing, Jun & Wan, Qingsong & Han, Yingxuan & Qu, Yunchao & Wu, Jianjun, 2024. "Modeling and optimization of toll lane selection for connected and automated vehicles at toll plazas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    11. Zong, Fang & Wang, Meng & Tang, Jinjun & Zeng, Meng, 2022. "Modeling AVs & RVs’ car-following behavior by considering impacts of multiple surrounding vehicles and driving characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Calvert, Simeon C. & Schakel, Wouter J. & van Lint, J.W.C., 2020. "A generic multi-scale framework for microscopic traffic simulation part II – Anticipation Reliance as compensation mechanism for potential task overload," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 42-63.
    13. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    14. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    15. Partha Chakroborty & Akhilesh Kumar Maurya, 2008. "Microscopic Analysis of Cellular Automata Based Traffic Flow Models and an Improved Model," Transport Reviews, Taylor & Francis Journals, vol. 28(6), pages 717-734, February.
    16. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    17. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    18. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    19. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Jiang, Yangsheng & Cong, Hongwei & Chen, Hongyu & Wu, Yunxia & Yao, Zhihong, 2024. "Adaptive cruise control design for collision risk avoidance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718815845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.