IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i8p2118-2132.html
   My bibliography  Save this article

A barrier too far: Understanding the role of intersection crossing distance on bicycle rider behavior in Chicago

Author

Listed:
  • Rohan L Aras
  • Nicholas T Ouellette
  • Rishee K Jain

Abstract

For a variety of environmental, health, and social reasons, there is a pressing need to reduce the automobile dependence of American cities. Bicycles are well suited to help achieve this goal. However, perceptions of rider safety present a large hindrance toward increased bicycle adoption. These perceptions are largely influenced by the design of our current road infrastructure, including the crossing distances of large intersections. In this paper, we examine the role of intersection crossing distances in modifying rider behavior through the construction of a novel dataset integrating street widths and probable trip routes from Chicago’s Divvy bikeshare system. We compare real trips to synthetic trips that are not influenced by the width of intersections and exploit behavior differences that result from the semi-dockless nature of the bikeshare system. Our analysis reveals that bikeshare riders do avoid large intersections in limited circumstances; however, these preferences appear to be heavily outweighed by the relative spatial positions of origins and destinations (i.e., the urban morphology of Chicago). Our results suggest that specific infrastructural investments such as protected intersections could prove feasible alternatives to reduce the perception and safety concerns associated with large road barriers and enhance the attractiveness of non-motorized mobility.

Suggested Citation

  • Rohan L Aras & Nicholas T Ouellette & Rishee K Jain, 2023. "A barrier too far: Understanding the role of intersection crossing distance on bicycle rider behavior in Chicago," Environment and Planning B, , vol. 50(8), pages 2118-2132, October.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:8:p:2118-2132
    DOI: 10.1177/23998083221147922
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083221147922
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083221147922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee, Richard J. & Sener, Ipek N., 2016. "Transportation planning and quality of life: Where do they intersect?," Transport Policy, Elsevier, vol. 48(C), pages 146-155.
    2. Jessica Schoner & David Levinson, 2014. "The missing link: bicycle infrastructure networks and ridership in 74 US cities," Transportation, Springer, vol. 41(6), pages 1187-1204, November.
    3. Mooney, Stephen J. & Hosford, Kate & Howe, Bill & Yan, An & Winters, Meghan & Bassok, Alon & Hirsch, Jana A., 2019. "Freedom from the station: Spatial equity in access to dockless bike share," Journal of Transport Geography, Elsevier, vol. 74(C), pages 91-96.
    4. Kyuhyun Lee & Ipek Nese Sener, 2021. "Strava Metro data for bicycle monitoring: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 41(1), pages 27-47, January.
    5. Meghan Winters & Gavin Davidson & Diana Kao & Kay Teschke, 2011. "Motivators and deterrents of bicycling: comparing influences on decisions to ride," Transportation, Springer, vol. 38(1), pages 153-168, January.
    6. Combs, Tabitha & Pardo, Carlos F., 2021. "Shifting Streets COVID-19 Mobility Data: Findings from a global dataset and a research agenda for transport planning and policy," SocArXiv 2mzuy, Center for Open Science.
    7. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Osama, Ahmed & Sayed, Tarek & Bigazzi, Alexander Y., 2017. "Models for estimating zone-level bike kilometers traveled using bike network, land use, and road facility variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 14-28.
    3. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    4. Sohrabi, Soheil & Paleti, Rajesh & Balan, Lacramioara & Cetin, Mecit, 2020. "Real-time prediction of public bike sharing system demand using generalized extreme value count model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 325-336.
    5. Mahfouz, Hussein & Lovelace, Robin & Arcaute, Elsa, 2023. "A road segment prioritization approach for cycling infrastructure," Journal of Transport Geography, Elsevier, vol. 113(C).
    6. Akbari Majid & Zarghamfard Moslem & Hajisharifi Arezoo & Amir Entekhabi Shahram & Goodarzipour Sadrallah, 2022. "Modelling the Obstacles to using Bicycle Sharing Systems in the Tehran Metropolis: A Structural Analysis," Quaestiones Geographicae, Sciendo, vol. 41(2), pages 109-124, June.
    7. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    8. Zheng, Zhiguo & Chen, Yunfeng & Zhu, Debao & Sun, Huijun & Wu, Jianjun & Pan, Xing & Li, Daqing, 2021. "Extreme unbalanced mobility network in bike sharing system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    9. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    10. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).
    11. Tyndall, Justin, 2022. "Complementarity of dockless mircomobility and rail transit," Journal of Transport Geography, Elsevier, vol. 103(C).
    12. Shukui Tan & Yi Zhao & Wenke Huang, 2019. "Neighborhood Social Disadvantage and Bicycling Behavior: A Big Data-Spatial Approach Based on Social Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(3), pages 985-999, October.
    13. Rodriguez-Valencia, Alvaro & Rosas-Satizábal, Daniel & Gordo, Daniel & Ochoa, Andrés, 2019. "Impact of household proximity to the cycling network on bicycle ridership: The case of Bogotá," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    14. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    15. Calvey, J.C. & Shackleton, J.P. & Taylor, M.D. & Llewellyn, R., 2015. "Engineering condition assessment of cycling infrastructure: Cyclists’ perceptions of satisfaction and comfort," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 134-143.
    16. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    17. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    18. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    19. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    20. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:8:p:2118-2132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.