IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v48y2021i5p1340-1356.html
   My bibliography  Save this article

Walking accessibility to neighbourhood open space in a multi-level urban environment of Hong Kong

Author

Listed:
  • Bo-Sin Tang
  • Kenneth KH Wong
  • Kenneth SS Tang
  • Siu Wai Wong

Abstract

This study presents the spatial analysis of walking accessibility to a public facility in a hilly, multi-level urban environment. Our spatial database includes street topography, physical impedances, formal crossings, and designated access points in assessing the network distance of all private residential buildings to public open space in Hong Kong. Pedestrian movement of uneven speed on walkways of varying gradients is assessed. The study concludes that, compared with our method, conventional buffer analysis and network distance analysis over-estimate the walking accessibility of private housing to neighbourhood open space in Hong Kong by about 2–8%. Despite Hong Kong’s compact built environment, about 15% of the total number of residential blocks cannot reach a neighbourhood open space within 5 minutes of walking (equivalent to the local planning standard of 400 metres of walking on a flat terrain). These open space-deficient neighbourhoods comprise mostly the affluent or middle-class households in gated housing estates and in low-rise housing, but also some neighbourhoods of underprivileged families in old urban tenement buildings. Our assessment reveals the spatial bias of land use planning policy leading to these blackspots of open space shortfall in the territory. It requires urban planners to pay attention to the geographical barriers of a pedestrian network in redressing the inequitable distribution and achieving a pedestrian-friendly 3D city.

Suggested Citation

  • Bo-Sin Tang & Kenneth KH Wong & Kenneth SS Tang & Siu Wai Wong, 2021. "Walking accessibility to neighbourhood open space in a multi-level urban environment of Hong Kong," Environment and Planning B, , vol. 48(5), pages 1340-1356, June.
  • Handle: RePEc:sae:envirb:v:48:y:2021:i:5:p:1340-1356
    DOI: 10.1177/2399808320932575
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808320932575
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808320932575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sugiyama, T. & Francis, J. & Middleton, N.J. & Owen, N. & Giles-CortI, B., 2010. "Associations between recreational walking and attractiveness, size, and proximity of neighborhood open spaces," American Journal of Public Health, American Public Health Association, vol. 100(9), pages 1752-1757.
    2. Cervero, R. & Duncan, M., 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1478-1483.
    3. Jason Byrne & Jennifer Wolch & Jin Zhang, 2009. "Planning for environmental justice in an urban national park," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 52(3), pages 365-392.
    4. Iacono, Michael & Krizek, Kevin J. & El-Geneidy, Ahmed, 2010. "Measuring non-motorized accessibility: issues, alternatives, and execution," Journal of Transport Geography, Elsevier, vol. 18(1), pages 133-140.
    5. Cervero, Robert & Duncan, Michael, 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," University of California Transportation Center, Working Papers qt6zr1x95m, University of California Transportation Center.
    6. Guo, Zhan & Loo, Becky P.Y., 2013. "Pedestrian environment and route choice: evidence from New York City and Hong Kong," Journal of Transport Geography, Elsevier, vol. 28(C), pages 124-136.
    7. Jared Hewko & Karen E Smoyer-Tomic & M John Hodgson, 2002. "Measuring Neighbourhood Spatial Accessibility to Urban Amenities: Does Aggregation Error Matter?," Environment and Planning A, , vol. 34(7), pages 1185-1206, July.
    8. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    9. Thill, Jean-Claude & Dao, Thi Hong Diep & Zhou, Yuhong, 2011. "Traveling in the three-dimensional city: applications in route planning, accessibility assessment, location analysis and beyond," Journal of Transport Geography, Elsevier, vol. 19(3), pages 405-421.
    10. Páez, Antonio & Scott, Darren M. & Morency, Catherine, 2012. "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography, Elsevier, vol. 25(C), pages 141-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majewska, Anna & Denis, Małgorzata & Jarecka-Bidzińska, Ewa & Jaroszewicz, Joanna & Krupowicz, Wioleta, 2022. "Pandemic resilient cities: Possibilities of repairing Polish towns and cities during COVID-19 pandemic," Land Use Policy, Elsevier, vol. 113(C).
    2. Chuloh Jung & Nahla Al Qassimi & Mohammad Arar & Jihad Awad, 2022. "The Improvement of User Satisfaction for Two Urban Parks in Dubai, UAE: Bay Avenue Park and Al Ittihad Park," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    3. Ho, Hung Chak & Cheng, Wei & Song, Yimeng & Liu, Yuqi & Guo, Yingqi & Lu, Shiyu & Lum, Terry Yat Sang & Chiu, Rebecca & Webster, Chris, 2022. "Spatial uncertainty and environment-health association: An empirical study of osteoporosis among “old residents” in public housing estates across a hilly environment," Social Science & Medicine, Elsevier, vol. 306(C).
    4. Gehad Megahed & Abeer Elshater & Samy Afifi & Mohab Abdelmoneim Elrefaie, 2024. "Reconceptualizing Proximity Measurement Approaches through the Urban Discourse on the X-Minute City," Sustainability, MDPI, vol. 16(3), pages 1-20, February.
    5. Wenhao Yu & Yaya Huang & Yujie Chen & Zelong Xia, 2022. "Accessibility analysis of urban fire stations within communities: a fine-scale perspective," Journal of Geographical Systems, Springer, vol. 24(4), pages 611-640, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fancello, Giovanna & Congiu, Tanja & Tsoukiàs, Alexis, 2020. "Mapping walkability. A subjective value theory approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    2. Ivan Blečić & Tanja Congiu & Giovanna Fancello & Giuseppe Andrea Trunfio, 2020. "Planning and Design Support Tools for Walkability: A Guide for Urban Analysts," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    3. Spencer, Phoebe & Watts, Richard & Vivanco, Luis & Flynn, Brian, 2013. "The effect of environmental factors on bicycle commuters in Vermont: influences of a northern climate," Journal of Transport Geography, Elsevier, vol. 31(C), pages 11-17.
    4. Xueying Wu & Yi Lu & Yaoyu Lin & Yiyang Yang, 2019. "Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    5. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Representing pedestrian activity in travel demand models: Framework and application," Journal of Transport Geography, Elsevier, vol. 52(C), pages 111-122.
    6. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    7. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    8. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    9. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.
    10. Paula Villagra & Carolina Quintana, 2017. "Disaster Governance for Community Resilience in Coastal Towns: Chilean Case Studies," IJERPH, MDPI, vol. 14(9), pages 1-24, September.
    11. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    12. Koh, Puay Ping & Wong, Yiik Diew, 2013. "Comparing pedestrians’ needs and behaviours in different land use environments," Journal of Transport Geography, Elsevier, vol. 26(C), pages 43-50.
    13. Chen, Wendong & Cheng, Long & Chen, Xuewu & Chen, Jingxu & Cao, Mengqiu, 2021. "Measuring accessibility to health care services for older bus passengers: A finer spatial resolution," Journal of Transport Geography, Elsevier, vol. 93(C).
    14. Ao, Yibin & Zhang, Yuting & Wang, Yan & Chen, Yunfeng & Yang, Linchuan, 2020. "Influences of rural built environment on travel mode choice of rural residents: The case of rural Sichuan," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. Mohammad Paydar & Asal Kamani Fard & Marzieh Khaghani, 2020. "Pedestrian Walkways for Health in Shiraz, Iran, the Contribution of Attitudes, and Perceived Environmental Attributes," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    16. Acheampong, Ransford A. & Siiba, Alhassan, 2018. "Examining the determinants of utility bicycling using a socio-ecological framework: An exploratory study of the Tamale Metropolis in Northern Ghana," Journal of Transport Geography, Elsevier, vol. 69(C), pages 1-10.
    17. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    18. Lin, Jen-Jia & Wei, Yi-Hsuan, 2018. "Assessing area-wide bikeability: A grey analytic network process," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 381-396.
    19. Nasar, Jack L. & Holloman, Christopher & Abdulkarim, Dina, 2015. "Street characteristics to encourage children to walk," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 62-70.
    20. Hao Huang, 2022. "Moderating Effects of Racial Segregation on the Associations of Cardiovascular Outcomes with Walkability in Chicago Metropolitan Area," IJERPH, MDPI, vol. 19(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:48:y:2021:i:5:p:1340-1356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.