IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v47y2020i5p759-774.html
   My bibliography  Save this article

Road network risk analysis considering people flow under ordinary and evacuation situations

Author

Listed:
  • Masahiro Sasabe
  • Kodai Fujii
  • Shoji Kasahara

Abstract

Both pre-disaster approaches, e.g., mitigation and preparedness, and post-disaster approaches, e.g., response and recovery, play important roles to mitigate the damage from large-scale disasters. From the viewpoint of disaster response, there have been studies on evacuation guiding schemes and applications using evacuees’ mobile devices, e.g., smart phones. On the other hand, disaster preparedness has also been studied mainly on geographical information analysis, e.g., road blockage probability and people flow data. The road blockage probability is the probability that the corresponding road is blocked due to collapse of roadside buildings when an earthquake occurs. The people flow data express the people flow in usual time. In this paper, with the help of evacuation guiding schemes, road blockage probability, and people flow data, we propose a road network risk analysis approach that considers people flow in both ordinary and evacuation situations, which can be used to as a tool to strengthen the urban fabric for fostering better evacuees’ responses in disaster situations. First, the proposed approach derives ordinary road demand, which is the degree of road usage at a certain interval in an ordinary situation, from the people flow data. Then, it calculates evacuation road demand, i.e., the degree of road usage at a certain interval in an evacuation situation, by extending the edge betweenness centrality under the assumption that people located according to the ordinary road demand move to refuges along their evacuation paths. Finally, it detects roads with high risk of encountering blocked road segments by combining the road blockage probability and evacuation road demand. Through numerical experiments under a case study of Arako area of Nagoya city in Japan, we show the proposed approach can detect such high-risk roads. Furthermore, we show the detected roads spatially change according to the people flow in ordinary situations, evacuation behavior, and disaster occurrence time.

Suggested Citation

  • Masahiro Sasabe & Kodai Fujii & Shoji Kasahara, 2020. "Road network risk analysis considering people flow under ordinary and evacuation situations," Environment and Planning B, , vol. 47(5), pages 759-774, June.
  • Handle: RePEc:sae:envirb:v:47:y:2020:i:5:p:759-774
    DOI: 10.1177/2399808318802940
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808318802940
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808318802940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Bono, Flavio & Gutiérrez, Eugenio, 2011. "A network-based analysis of the impact of structural damage on urban accessibility following a disaster: the case of the seismically damaged Port Au Prince and Carrefour urban road networks," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1443-1455.
    3. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling Yin & Jie Chen & Hao Zhang & Zhile Yang & Qiao Wan & Li Ning & Jinxing Hu & Qi Yu, 2020. "Improving emergency evacuation planning with mobile phone location data," Environment and Planning B, , vol. 47(6), pages 964-980, July.
    2. Masahiko Haraguchi & Akihiko Nishino & Akira Kodaka & Maura Allaire & Upmanu Lall & Liao Kuei-Hsien & Kaya Onda & Kota Tsubouchi & Naohiko Kohtake, 2022. "Human mobility data and analysis for urban resilience: A systematic review," Environment and Planning B, , vol. 49(5), pages 1507-1535, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suwan Shen & Xi Feng & Zhong Ren Peng, 2016. "A framework to analyze vulnerability of critical infrastructure to climate change: the case of a coastal community in Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 589-609, October.
    2. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    3. Martijn Warnier & Vincent Alkema & Tina Comes & Bartel Walle, 2020. "Humanitarian access, interrupted: dynamic near real-time network analytics and mapping for reaching communities in disaster-affected countries," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 815-834, September.
    4. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    5. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    6. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
    7. Juan Carlos García-Palomares & Javier Gutiérrez & Juan Carlos Martín & Borja Moya-Gómez, 2018. "An analysis of the Spanish high capacity road network criticality," Transportation, Springer, vol. 45(4), pages 1139-1159, July.
    8. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    9. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    10. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    12. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    13. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    14. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    15. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    17. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    18. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    19. Dowds, Jonathan & Aultman-Hall, Lisa, 2015. "Challenges and Opportunities for Integrating Climate Adaptation Efforts across State, Regional and Local Transportation Agencies," Institute of Transportation Studies, Working Paper Series qt5t88h66m, Institute of Transportation Studies, UC Davis.
    20. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:47:y:2020:i:5:p:759-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.