IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v42y2020i3d10.1007_s00291-020-00582-0.html
   My bibliography  Save this article

Humanitarian access, interrupted: dynamic near real-time network analytics and mapping for reaching communities in disaster-affected countries

Author

Listed:
  • Martijn Warnier

    (Delft University of Technology)

  • Vincent Alkema

    (Delft University of Technology)

  • Tina Comes

    (Delft University of Technology)

  • Bartel Walle

    (Delft University of Technology)

Abstract

In the immediate aftermath of a disaster, local and international aid organisations deploy to deliver life-saving aid to the affected population. Yet pre-disaster road maps and road transportation models do not capture disruptions to the transportation network caused by the disaster or the dynamic changes of the situation, resulting in uncertainty and inefficiency in planning and decision-making. The integration of data in near real time on the status of the road infrastructure in the affected region can help aid organisations to keep track of the rapidly shifting conditions on the ground and to assess the implications for their logistics planning and operations. In this paper, we present a rapid graph-theoretical reachability information system based on a combination of OpenStreetMap and open humanitarian data. The system supports logistics planning in determining road access to affected communities. We demonstrate the results of our approach in a case study on the 2018 earthquake in Papua New Guinea. Our findings show the reachability of affected communities depending on the actual status of the road network, allowing for the prioritization of targeted locations and the identification of alternative routes to get there.

Suggested Citation

  • Martijn Warnier & Vincent Alkema & Tina Comes & Bartel Walle, 2020. "Humanitarian access, interrupted: dynamic near real-time network analytics and mapping for reaching communities in disaster-affected countries," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 815-834, September.
  • Handle: RePEc:spr:orspec:v:42:y:2020:i:3:d:10.1007_s00291-020-00582-0
    DOI: 10.1007/s00291-020-00582-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-020-00582-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-020-00582-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Nazli Yonca Aydin & H. Sebnem Duzgun & Friedemann Wenzel & Hans Rudolf Heinimann, 2018. "Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 37-68, March.
    3. Nitesh Bharosa & JinKyu Lee & Marijn Janssen, 2010. "Challenges and obstacles in sharing and coordinating information during multi-agency disaster response: Propositions from field exercises," Information Systems Frontiers, Springer, vol. 12(1), pages 49-65, March.
    4. Guido Schryen & Gerhard Rauchecker & Tina Comes, 2015. "Resource Planning in Disaster Response," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 57(4), pages 243-259, August.
    5. Sameer Prasad & Rimi Zakaria & Nezih Altay, 2018. "Big data in humanitarian supply chain networks: a resource dependence perspective," Annals of Operations Research, Springer, vol. 270(1), pages 383-413, November.
    6. Laurie Schintler & Rajendra Kulkarni & Sean Gorman & Roger Stough, 2007. "Using Raster-Based GIS and Graph Theory to Analyze Complex Networks," Networks and Spatial Economics, Springer, vol. 7(4), pages 301-313, December.
    7. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    8. Baharmand, Hossein & Comes, Tina & Lauras, Matthieu, 2019. "Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 86-110.
    9. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    10. L N Van Wassenhove, 2006. "Humanitarian aid logistics: supply chain management in high gear," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 475-489, May.
    11. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, September.
    12. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    13. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    14. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    15. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    16. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    17. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    18. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chantal Cherifi & Guillaume Bouleux & Aurélie Charles, 2021. "Towards a holistic modeling of the humanitarian crisis complex relief system," Post-Print hal-03355075, HAL.
    2. Walter J. Gutjahr & Nilay Noyan & Nico Vandaele & Luk N. Wassenhove, 2020. "Innovative approaches in humanitarian operations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 585-589, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    2. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    3. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    4. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    5. Christian Wankmüller & Gerald Reiner, 2021. "Identifying Challenges and Improvement Approaches for More Efficient Procurement Coordination in Relief Supply Chains," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    6. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    7. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    8. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    9. Farzaneh, Mohammad Amin & Rezapour, Shabnam & Baghaian, Atefe & Amini, M. Hadi, 2023. "An integrative framework for coordination of damage assessment, road restoration, and relief distribution in disasters," Omega, Elsevier, vol. 115(C).
    10. V. G. Venkatesh & Abraham Zhang & Eric Deakins & Sunil Luthra & S. Mangla, 2019. "A fuzzy AHP-TOPSIS approach to supply partner selection in continuous aid humanitarian supply chains," Annals of Operations Research, Springer, vol. 283(1), pages 1517-1550, December.
    11. Hasti Seraji & Reza Tavakkoli-Moghaddam & Sobhan Asian & Harpreet Kaur, 2022. "An integrative location-allocation model for humanitarian logistics with distributive injustice and dissatisfaction under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 211-257, December.
    12. Arslan, Okan & Kumcu, Gül Çulhan & Kara, Bahar Yetiş & Laporte, Gilbert, 2021. "The location and location-routing problem for the refugee camp network design," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 201-220.
    13. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    14. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    15. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    16. Josip Marić & Carlos Galera-Zarco & Marco Opazo-Basáez, 2022. "The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1003-1044, December.
    17. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    18. Narayan Prasad Nagendra & Gopalakrishnan Narayanamurthy & Roger Moser, 2022. "Management of humanitarian relief operations using satellite big data analytics: the case of Kerala floods," Annals of Operations Research, Springer, vol. 319(1), pages 885-910, December.
    19. Surajit Bag & Shivam Gupta & Lincoln Wood, 2022. "Big data analytics in sustainable humanitarian supply chain: barriers and their interactions," Annals of Operations Research, Springer, vol. 319(1), pages 721-760, December.
    20. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:42:y:2020:i:3:d:10.1007_s00291-020-00582-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.