IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4806-d1289721.html
   My bibliography  Save this article

Algorithm for the Accelerated Calculation of Conceptual Distances in Large Knowledge Graphs

Author

Listed:
  • Rolando Quintero

    (Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos (UPALM)-Zacatenco, Mexico City 07320, Mexico)

  • Esteban Mendiola

    (Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos (UPALM)-Zacatenco, Mexico City 07320, Mexico)

  • Giovanni Guzmán

    (Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos (UPALM)-Zacatenco, Mexico City 07320, Mexico)

  • Miguel Torres-Ruiz

    (Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos (UPALM)-Zacatenco, Mexico City 07320, Mexico)

  • Carlos Guzmán Sánchez-Mejorada

    (Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Unidad Profesional Adolfo López Mateos (UPALM)-Zacatenco, Mexico City 07320, Mexico)

Abstract

Conceptual distance refers to the degree of proximity between two concepts within a conceptualization. It is closely related to semantic similarity and relationships, but its measurement strongly depends on the context of the given concepts. DIS-C represents an advancement in the computation of semantic similarity/relationships that is independent of the type of knowledge structure and semantic relations when generating a graph from a knowledge base (ontologies, semantic networks, and hierarchies, among others). This approach determines the semantic similarity between two indirectly connected concepts in an ontology by propagating local distances by applying an algorithm based on the All Pairs Shortest Path (APSP) problem. This process is implemented for each pair of concepts to establish the most effective and efficient paths to connect these concepts. The algorithm identifies the shortest path between concepts, which allows for an inference of the most relevant relationships between them. However, one of the critical issues with this process is computational complexity, combined with the design of APSP algorithms, such as Dijkstra, which is 𝒪 n 3 . This paper studies different alternatives to improve the DIS-C approach by adapting approximation algorithms, focusing on Dijkstra, pruned Dijkstra, and sketch-based methods, to compute the conceptual distance according to the need to scale DIS-C to analyze very large graphs; therefore, reducing the related computational complexity is critical. Tests were performed using different datasets to calculate the conceptual distance when using the original version of DIS-C and when using the influence area of nodes. In situations where time optimization is necessary for generating results, using the original DIS-C model is not the optimal method. Therefore, we propose a simplified version of DIS-C to calculate conceptual distances based on centrality estimation. The obtained results for the simple version of DIS-C indicated that the processing time decreased 2.381 times when compared to the original DIS-C version. Additionally, for both versions of DIS-C (normal and simple), the APSP algorithm decreased the computational cost when using a two-hop coverage-based approach.

Suggested Citation

  • Rolando Quintero & Esteban Mendiola & Giovanni Guzmán & Miguel Torres-Ruiz & Carlos Guzmán Sánchez-Mejorada, 2023. "Algorithm for the Accelerated Calculation of Conceptual Distances in Large Knowledge Graphs," Mathematics, MDPI, vol. 11(23), pages 1-30, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4806-:d:1289721
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rolando Quintero & Miguel Torres-Ruiz & Magdalena Saldaña-Pérez & Carlos Guzmán Sánchez-Mejorada & Felix Mata-Rivera, 2023. "A Conceptual Graph-Based Method to Compute Information Content," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    2. Yu-Li Chou & H. Edwin Romeijn & Robert L. Smith, 1998. "Approximating Shortest Paths in Large-Scale Networks with an Application to Intelligent Transportation Systems," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 163-179, May.
    3. Stuart E. Dreyfus, 1969. "An Appraisal of Some Shortest-Path Algorithms," Operations Research, INFORMS, vol. 17(3), pages 395-412, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pijls, Wim & Post, Henk, 2009. "A new bidirectional search algorithm with shortened postprocessing," European Journal of Operational Research, Elsevier, vol. 198(2), pages 363-369, October.
    2. Steven K. Peterson & Richard L. Church, 2008. "A Framework for Modeling Rail Transport Vulnerability," Growth and Change, Wiley Blackwell, vol. 39(4), pages 617-641, December.
    3. Yang, Jinling & Chen, Zhiwei & Criado, Regino & Zhang, Shenggui, 2024. "A mathematical framework for shortest path length computation in multi-layer networks with inter-edge weighting and dynamic inter-edge weighting: The case of the Beijing bus network, China," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Delafield, Gemma & Smith, Greg S. & Day, Brett & Holland, Robert A. & Donnison, Caspar & Hastings, Astley & Taylor, Gail & Owen, Nathan & Lovett, Andrew, 2024. "Spatial context matters: Assessing how future renewable energy pathways will impact nature and society," Renewable Energy, Elsevier, vol. 220(C).
    5. Dimitri P. Bertsekas, 2019. "Robust shortest path planning and semicontractive dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 15-37, February.
    6. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    7. Yingying Kang & Rajan Batta & Changhyun Kwon, 2014. "Value-at-Risk model for hazardous material transportation," Annals of Operations Research, Springer, vol. 222(1), pages 361-387, November.
    8. Azar Sadeghnejad-Barkousaraie & Rajan Batta & Moises Sudit, 2017. "Convoy movement problem: a civilian perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 14-33, January.
    9. Irina S. Dolinskaya, 2012. "Optimal path finding in direction, location, and time dependent environments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 325-339, August.
    10. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    11. Irina S. Dolinskaya & Marina A. Epelman & Esra Şişikoğlu Sir & Robert L. Smith, 2016. "Parameter-Free Sampled Fictitious Play for Solving Deterministic Dynamic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 631-655, May.
    12. Ahuja, Ravindra & Orlin, James & Pallottino, Stefano & Scutella, Maria, 2003. "Dynamic Shortest Paths Minimizing Travel Times And Costs," Working papers 4390-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    13. Jotshi, Arun & Gong, Qiang & Batta, Rajan, 2009. "Dispatching and routing of emergency vehicles in disaster mitigation using data fusion," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 1-24, March.
    14. Eliécer Gutiérrez & Andrés Medaglia, 2008. "Labeling algorithm for the shortest path problem with turn prohibitions with application to large-scale road networks," Annals of Operations Research, Springer, vol. 157(1), pages 169-182, January.
    15. Francesca Guerriero & Roberto Musmanno & Valerio Lacagnina & Antonio Pecorella, 2001. "A Class of Label-Correcting Methods for the K Shortest Paths Problem," Operations Research, INFORMS, vol. 49(3), pages 423-429, June.
    16. Hanif D. Sherali & Antoine G. Hobeika & Sasikul Kangwalklai, 2003. "Time-Dependent, Label-Constrained Shortest Path Problems with Applications," Transportation Science, INFORMS, vol. 37(3), pages 278-293, August.
    17. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    18. Daniel Selva & Bruce Cameron & Ed Crawley, 2016. "Patterns in System Architecture Decisions," Systems Engineering, John Wiley & Sons, vol. 19(6), pages 477-497, November.
    19. Luigi Di Puglia Pugliese & Francesca Guerriero, 2016. "On the shortest path problem with negative cost cycles," Computational Optimization and Applications, Springer, vol. 63(2), pages 559-583, March.
    20. Fu, Liping, 2001. "An adaptive routing algorithm for in-vehicle route guidance systems with real-time information," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 749-765, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4806-:d:1289721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.