IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v41y2014i3p450-471.html
   My bibliography  Save this article

Allometry in the Syntax of Street Networks: Evolution of Adriatic and Ionian Coastal Cities 1800–2010

Author

Listed:
  • Ermal Shpuza

    (Department of Architecture, Southern Polytechnic State University, 1100 South Marietta Parkway, Marietta, GA 30060-2896, USA)

Abstract

Urban growth is discussed according to the impact of size on metric and topological space syntax measures that describe street networks. The quantitative analysis of three historical stages of cities on the Adriatic and Ionian coastline is supported by a unique database of historical maps and axial map representations. The empirical evidence demonstrates strong and significant allometric relationships of total length of lines to the area of urbanized territory, and total length, total connectivity, overall depth, total choice (betweenness), and total depth entropy to axial map size. In this paper allometric equations are derived for the measures and it is shown that comparative analysis based on means of measures traditionally used in space syntax does not comply with the observed ontogenetic relationships. The allometric trends of length to area and of connectivity to network size are shown to have sublinear scaling exponents, whereas allometric relationships of length, depth, choice, and entropy to network size are expressed with superlinear exponents. The comparison among three historical stages shows that allometry of depth to axial map size maintains statistical equivalence at the ontogenetic scale that transcends various types of street patterns, growth models, and physiographic conditions. In contrast, allometric relationships of depth, choice, and entropy to size reveal distinct universality classes between cities on the Italian and Balkan coasts, and between cities with and without gridiron street patterns.

Suggested Citation

  • Ermal Shpuza, 2014. "Allometry in the Syntax of Street Networks: Evolution of Adriatic and Ionian Coastal Cities 1800–2010," Environment and Planning B, , vol. 41(3), pages 450-471, June.
  • Handle: RePEc:sae:envirb:v:41:y:2014:i:3:p:450-471
    DOI: 10.1068/b39109
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b39109
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b39109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    2. Volchenkov, D. & Blanchard, Ph., 2008. "Scaling and universality in city space syntax: Between Zipf and Matthew," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2353-2364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    2. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    3. Ermal Shpuza, 2017. "Relative size measures of urban form based on allometric subtraction," Environment and Planning B, , vol. 44(1), pages 141-159, January.
    4. Lin, Jingyi, 2012. "Network analysis of China’s aviation system, statistical and spatial structure," Journal of Transport Geography, Elsevier, vol. 22(C), pages 109-117.
    5. Asya Natapov & Daniel Czamanski & Dafna Fisher-Gewirtzman, 2018. "A Network Approach to Link Visibility and Urban Activity Location," Networks and Spatial Economics, Springer, vol. 18(3), pages 555-575, September.
    6. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    7. Basnak, Paul & Giesen, Ricardo & Muñoz, Juan Carlos, 2020. "Technology choices in public transport planning: A classification framework," Research in Transportation Economics, Elsevier, vol. 83(C).
    8. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.
    9. Chunzhu Wei & Pablo Cabrera-Barona & Thomas Blaschke, 2016. "Local Geographic Variation of Public Services Inequality: Does the Neighborhood Scale Matter?," IJERPH, MDPI, vol. 13(10), pages 1-20, October.
    10. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    11. David J Giacomin & David M Levinson, 2015. "Road network circuity in metropolitan areas," Environment and Planning B, , vol. 42(6), pages 1040-1053, November.
    12. Tsou, Ko-Wan & Cheng, Hao-Teng & Tseng, Fu-Yi, 2015. "Exploring the relationship between multilevel highway networks and local development patterns—a case study of Taiwan," Journal of Transport Geography, Elsevier, vol. 43(C), pages 160-170.
    13. Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    14. Amaud Banos, 2012. "Network Effects in Schelling's Model of Segregation: New Evidence from Agent-Based Simulation," Environment and Planning B, , vol. 39(2), pages 393-405, April.
    15. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2018. "An algorithm to compute data diversity index in spatial networks," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 63-75.
    16. Liang Huang & Xinyan Zhu & Xinyue Ye & Wei Guo & Jiye Wang, 2016. "Characterizing street hierarchies through network analysis and large-scale taxi traffic flow: a case study of Wuhan, China," Environment and Planning B, , vol. 43(2), pages 276-296, March.
    17. Sehyun Tak & Sunghoon Kim & Young-Ji Byon & Donghoun Lee & Hwasoo Yeo, 2018. "Measuring health of highway network configuration against dynamic Origin-Destination demand network using weighted complex network analysis," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
    18. Nadia M. Viljoen & Johan W. Joubert, 2018. "The Road most Travelled: The Impact of Urban Road Infrastructure on Supply Chain Network Vulnerability," Networks and Spatial Economics, Springer, vol. 18(1), pages 85-113, March.
    19. H. Serdar Kaya & Elif Alkay, 2013. "Spatial Integration in Explaining the Accessibility to Residential Areas: Bandirma Case," ERSA conference papers ersa13p725, European Regional Science Association.
    20. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:41:y:2014:i:3:p:450-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.