IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v29y2018i5p742-751.html
   My bibliography  Save this article

Exploring lignocellulosic biomass for bio-methane potential by anaerobic digestion and its economic feasibility

Author

Listed:
  • Shehbaz Ali
  • Tawaf A Shah
  • Asifa Afzal
  • Romana Tabassum

Abstract

Anaerobic digestion is a process to convert organic biomass into bio-methane. Plenty of produced waste in Pakistan is enough to compensate energy thirst of country and have potential to replace costly fossil fuels. The lignocellulosic biomass such as wheat straw, almond shell, sugarcane bagasse, maize straw and corn cob were subjected to bio-methane potential assay after proximate, ultimate and chemical analysis. These chemical fractions provide better understanding about theoretically predicating bio-methane potentials such as neutral detergent fibre, acid detergent fibre, acid detergent lignin, cellulose, hemicellulose, carbohydrates, proteins and elemental analysis. Experimental bio-methane potentials were found, 267.74 (wheat straw), 255.32 (almond shell), 222.23 (corn cob), 247.60 (sugar cane bagasse) and 293.12 ml/g (maize straw) volatile solids and was much less than predicted methane potential. The energy content on dry basis and methane potential has been assessed to find economic feasibility of biomass. The biodegradability and methane potential inversely related to the lignin content of biomass. Bioenergy production from biomass is economically favourable. The volatile fatty acids were produced in the percentage of 53–58% acetic acid, 30–35% butyric acids and 6–13% propionic acid and showed same metabolic pathway and types of bacteria involved in digestion.

Suggested Citation

  • Shehbaz Ali & Tawaf A Shah & Asifa Afzal & Romana Tabassum, 2018. "Exploring lignocellulosic biomass for bio-methane potential by anaerobic digestion and its economic feasibility," Energy & Environment, , vol. 29(5), pages 742-751, August.
  • Handle: RePEc:sae:engenv:v:29:y:2018:i:5:p:742-751
    DOI: 10.1177/0958305X18759009
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18759009
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18759009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    2. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    3. Du, Jing & Qian, Yuting & Xi, Yonglan & Lü, Xiwu, 2019. "Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw," Renewable Energy, Elsevier, vol. 139(C), pages 261-267.
    4. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & Batista Magalhães, Emilianny Rafaely & de Macedo, Gorete Ribeiro & dos Santos, Everaldo Silvino, 2018. "Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF)," Renewable Energy, Elsevier, vol. 127(C), pages 661-669.
    5. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.
    6. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    7. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    8. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    9. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    10. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Ammenberg, Jonas & Feiz, Roozbeh, 2017. "Assessment of feedstocks for biogas production, part II—Results for strategic decision making," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 388-404.
    12. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    13. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    14. Salam, Kamoru A. & Velasquez-Orta, Sharon B. & Harvey, Adam P., 2016. "A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1179-1198.
    15. Mohd Yasin, Nazlina Haiza & Ikegami, Azusa & Wood, Thomas K. & Yu, Chang-Ping & Haruyama, Tetsuya & Takriff, Mohd Sobri & Maeda, Toshinari, 2017. "Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge," Applied Energy, Elsevier, vol. 202(C), pages 399-407.
    16. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
    19. Suriyan Boonpiyo & Sureewan Sittijunda & Alissara Reungsang, 2018. "Co-Digestion of Napier Grass with Food Waste and Napier Silage with Food Waste for Methane Production," Energies, MDPI, vol. 11(11), pages 1-13, November.
    20. Yao, Yiqing & Bergeron, Andre David & Davaritouchaee, Maryam, 2018. "Methane recovery from anaerobic digestion of urea-pretreated wheat straw," Renewable Energy, Elsevier, vol. 115(C), pages 139-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:29:y:2018:i:5:p:742-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.