IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v44y2023i2p181-204.html
   My bibliography  Save this article

Efficiency Measurement in Norwegian Electricity Distribution: A Generalized Four-Way-Error-Component Stochastic Frontier Model

Author

Listed:
  • Mike G. Tsionas
  • Subal C. Kumbhakar

Abstract

In this paper, we introduce a new model to estimate efficiency by generalizing the state-of-the-art panel stochastic frontier model, the salient feature of which is decomposition of inefficiency into a persistent and a transient component. The proposed model introduces an autoregressive process to allow for temporal dependence in transient inefficiency. Both firm heterogeneity and persistent inefficiency components are allowed to be correlated with some exogenous and endogenous covariates in the model. Our model solves the endogeneity problem and it also introduces determinants of both persistent and transient inefficiency. Since the transient component is autoregressive, the likelihood function is not available in closed form. To address this problem we use the Maximum Simulated Likelihood and (Simulated or Bayes) Generalized Method of Moments method to estimate the parameters and several other quantities of interest, including transient and persistent inefficiency. Since the model is dynamic and accommodates determinants of inefficiency, it is useful to production managers who wish to identify how much of their present inefficiency is affected by past inefficiency, as well as how and in what ways efficiency can be improved. We use Norwegian electricity distribution data to showcase an application of our model.

Suggested Citation

  • Mike G. Tsionas & Subal C. Kumbhakar, 2023. "Efficiency Measurement in Norwegian Electricity Distribution: A Generalized Four-Way-Error-Component Stochastic Frontier Model," The Energy Journal, , vol. 44(2), pages 181-204, March.
  • Handle: RePEc:sae:enejou:v:44:y:2023:i:2:p:181-204
    DOI: 10.5547/01956574.44.2.mtsi
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.44.2.mtsi
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.44.2.mtsi?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baležentis, Tomas & Sun, Kai, 2020. "Measurement of technical inefficiency and total factor productivity growth: A semiparametric stochastic input distance frontier approach and the case of Lithuanian dairy farms," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1174-1188.
    2. Subal C. Kumbhakar, Orjan Mydland, Andrew Musau, and Gudbrand Lien, 2020. "Disentangling Costs of Persistent and Transient Technical Inefficiency and Input Misallocation: The Case of Norwegian Electricity Distribution Firms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 143-160.
    3. Michael Creel, 2008. "Estimation of Dynamic Latent Variable Models Using Simulated Nonparametric Moments," UFAE and IAE Working Papers 725.08, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 02 Jun 2008.
    4. Lai, Hung-pin & Kumbhakar, Subal C., 2018. "Panel data stochastic frontier model with determinants of persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 271(2), pages 746-755.
    5. Badunenko, Oleg & Kumbhakar, Subal C., 2017. "Economies of scale, technical change and persistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter?," European Journal of Operational Research, Elsevier, vol. 260(2), pages 789-803.
    6. Michael Creel & Dennis Kristensen, 2012. "Estimation of dynamic latent variable models using simulated non‐parametric moments," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 490-515, October.
    7. Lai, Hung-pin & Kumbhakar, Subal C., 2018. "Endogeneity in panel data stochastic frontier model with determinants of persistent and transient inefficiency," Economics Letters, Elsevier, vol. 162(C), pages 5-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musau, Andrew & Kumbhakar, Subal C. & Mydland, Ørjan & Lien, Gudbrand, 2021. "Determinants of allocative and technical inefficiency in stochastic frontier models: An analysis of Norwegian electricity distribution firms," European Journal of Operational Research, Elsevier, vol. 288(3), pages 983-991.
    2. Subal C. Kumbhakar & Ørjan Mydland & Andrew Musau & Gudbrand Lien, 2020. "Disentangling Costs of Persistent and Transient Technical Inefficiency and Input Misallocation: The Case of Norwegian Electricity Distribution Firms," The Energy Journal, , vol. 41(3), pages 143-160, May.
    3. Subal C. Kumbhakar & Norman V. Loayza & Vivian Norambuena, 2020. "International Benchmarking for Country Economic Diagnostics," Working Papers wp498, University of Chile, Department of Economics.
    4. Andrew P. Barnes, 2023. "The role of family life‐cycle events on persistent and transient inefficiencies in less favoured areas," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 295-315, February.
    5. Kumbhakar,Subal C. & Loayza,Norman V. & Norambuena,Vivian, 2020. "International Benchmarking for Country Economic Diagnostics : A Stochastic Frontier Approach," Policy Research Working Paper Series 9304, The World Bank.
    6. Kumbhakar, Subal C. & Li, Mingyang & Lien, Gudbrand, 2023. "Do subsidies matter in productivity and profitability changes?," Economic Modelling, Elsevier, vol. 123(C).
    7. Badunenko, Oleg & D’Inverno, Giovanna & De Witte, Kristof, 2023. "On distinguishing the direct causal effect of an intervention from its efficiency-enhancing effects," European Journal of Operational Research, Elsevier, vol. 310(1), pages 432-447.
    8. Manuel Salas‐Velasco, 2020. "Assessing the performance of Spanish secondary education institutions: Distinguishing between transient and persistent inefficiency, separated from heterogeneity," Manchester School, University of Manchester, vol. 88(4), pages 531-555, July.
    9. Kumbhakar, Subal C. & Badunenko, Oleg & Willox, Michael, 2022. "Do carbon taxes affect economic and environmental efficiency? The case of British Columbia’s manufacturing plants," Energy Economics, Elsevier, vol. 115(C).
    10. Hou, Zhezhi & Zhao, Shunan & Kumbhakar, Subal C., 2023. "The GMM estimation of semiparametric spatial stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1450-1464.
    11. Pontus Mattsson & Jonas Månsson & William H. Greene, 2020. "TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 79-93, February.
    12. Bernstein, David H., 2020. "An updated assessment of technical efficiency and returns to scale for U.S. electric power plants," Energy Policy, Elsevier, vol. 147(C).
    13. Pontus Mattsson & Jonas Mansson & William H. Greene, 2018. "TFP Change and its Components for Swedish Manufacturing Firms During the 2008-2009 Financial Crisis," Working Papers 18-27, New York University, Leonard N. Stern School of Business, Department of Economics.
    14. Baležentis, Tomas & Sun, Kai, 2020. "Measurement of technical inefficiency and total factor productivity growth: A semiparametric stochastic input distance frontier approach and the case of Lithuanian dairy farms," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1174-1188.
    15. Tsionas, Mike G. & Kumbhakar, Subal C., 2021. "Stochastic frontier models with time-varying conditional variances," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1115-1132.
    16. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    17. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).
    18. Lamees Al-Durgham & Mohammad Adeinat, 2020. "Efficiency of Listed Manufacturing Firms in Jordan: A Stochastic Frontier Analysis," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 5-9.
    19. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    20. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:44:y:2023:i:2:p:181-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.