IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v53y2020i1d10.1007_s11123-019-00561-w.html
   My bibliography  Save this article

TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis

Author

Listed:
  • Pontus Mattsson

    (Linnaeus University)

  • Jonas Månsson

    (Linnaeus University)

  • William H. Greene

    (New York University)

Abstract

A driving force of economic development is growth in total factor productivity (TFP). Manufactured goods are, to a large extent, exports, and represent an important part of the economy for many developed countries. Additionally, a slowdown in labour productivity has been observed in many OECD countries since the financial crisis of 2008–2009. This study investigates TFP change and its components for the Swedish manufacturing industry, compared with the private service sector, during the years 1997–2013, centering on the financial crisis. Stochastic frontier analysis (SFA) is used to disentangle persistent and transient efficiency from firm heterogeneity and random noise, respectively. In addition, technical change (TC), returns to scale (RTS) and a scale change (SC) component are also identified. Along with the empirical analysis, an elaborative discussion regarding TC in SFA is provided. The persistent part for manufacturing (service) is 0.796 (0.754) and the transient part is 0.787 (0.762), indicating improvement potentials. Furthermore, TFP change is substantially lower between the years 2007–2013, compared to 1997–2007. This occurs due to a lower technological progress. Policy should, therefore, target interventions that enhance technology. However, care needs to be taken so that policies do not sustain low-productive firms that otherwise would exit the market.

Suggested Citation

  • Pontus Mattsson & Jonas Månsson & William H. Greene, 2020. "TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 79-93, February.
  • Handle: RePEc:kap:jproda:v:53:y:2020:i:1:d:10.1007_s11123-019-00561-w
    DOI: 10.1007/s11123-019-00561-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-019-00561-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-019-00561-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    2. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    3. Massimo Filippini & Thomas Geissmann & William H. Greene, 2018. "Persistent and transient cost efficiency—an application to the Swiss hydropower sector," Journal of Productivity Analysis, Springer, vol. 49(1), pages 65-77, February.
    4. Kapelko, Magdalena & Oude Lansink, Alfons & Stefanou, Spiro E., 2014. "Assessing dynamic inefficiency of the Spanish construction sector pre- and post-financial crisis," European Journal of Operational Research, Elsevier, vol. 237(1), pages 349-357.
    5. Efthymios G. Tsionas & Subal C. Kumbhakar, 2014. "FIRM HETEROGENEITY, PERSISTENT AND TRANSIENT TECHNICAL INEFFICIENCY: A GENERALIZED TRUE RANDOM‐EFFECTS model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 110-132, January.
    6. Jan De Loecker, 2011. "Product Differentiation, Multiproduct Firms, and Estimating the Impact of Trade Liberalization on Productivity," Econometrica, Econometric Society, vol. 79(5), pages 1407-1451, September.
    7. Valerie Cerra & Sweta Chaman Saxena, 2008. "Growth Dynamics: The Myth of Economic Recovery," American Economic Review, American Economic Association, vol. 98(1), pages 439-457, March.
    8. Apurba Shee & Spiro E. Stefanou, 2015. "Endogeneity Corrected Stochastic Production Frontier and Technical Efficiency," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 939-952.
    9. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    10. Subal Kumbhakar & M. Denny & M. Fuss, 2000. "Estimation and decomposition of productivity change when production is not efficient: a paneldata approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 312-320.
    11. Bergvall, Anders, 2000. "Exchange Rate Regimes and Macroeconomic Stability: The Case of Sweden 1972-1996," Working Paper Series 2000:25, Uppsala University, Department of Economics.
    12. Baltagi, Badi H & Griffin, James M & Rich, Daniel P, 1995. "The Measurement of Firm-Specific Indexes of Technical Change," The Review of Economics and Statistics, MIT Press, vol. 77(4), pages 654-663, November.
    13. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    14. Donghyun Oh & Almas Heshmati & Hans Lööf, 2012. "Technical change and total factor productivity growth for Swedish manufacturing and service industries," Applied Economics, Taylor & Francis Journals, vol. 44(18), pages 2373-2391, June.
    15. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    16. Sun, Kai & Kumbhakar, Subal C. & Tveterås, Ragnar, 2015. "Productivity and efficiency estimation: A semiparametric stochastic cost frontier approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 194-202.
    17. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    18. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    19. Park, Kang H. & Weber, William L., 2006. "A note on efficiency and productivity growth in the Korean Banking Industry, 1992-2002," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2371-2386, August.
    20. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    21. Georgios D. Papagiannis, 2014. "Measurement of Efficiency in Greek Banking Industries in The Light of the Financial Crisis," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 19-38.
    22. Almas Heshmati & Subal C. Kumbhakar, 2014. "A general model of technical change with an application to the OECD countries," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 23(1), pages 25-48, January.
    23. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    24. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    25. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    26. Kumbhakar, Subal C., 1987. "The specification of technical and allocative inefficiency in stochastic production and profit frontiers," Journal of Econometrics, Elsevier, vol. 34(3), pages 335-348, March.
    27. Lai, Hung-pin & Kumbhakar, Subal C., 2018. "Panel data stochastic frontier model with determinants of persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 271(2), pages 746-755.
    28. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514, January.
    29. Badunenko, Oleg & Kumbhakar, Subal C., 2017. "Economies of scale, technical change and persistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter?," European Journal of Operational Research, Elsevier, vol. 260(2), pages 789-803.
    30. Sangho Kim & Mazlina Shafi'i, 2009. "Factor Determinants of Total Factor Productivity Growth in Malaysian Manufacturing Industries: a decomposition analysis," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 23(1), pages 48-65, May.
    31. Sangho Kim & Gwangho Han, 2001. "A Decomposition of Total Factor Productivity Growth in Korean Manufacturing Industries: A Stochastic Frontier Approach," Journal of Productivity Analysis, Springer, vol. 16(3), pages 269-281, November.
    32. Diewert, W. E., 1976. "Exact and superlative index numbers," Journal of Econometrics, Elsevier, vol. 4(2), pages 115-145, May.
    33. Nishimizu, Mieko & Page, John M, Jr, 1982. "Total Factor Productivity Growth, Technological Progress and Technical Efficiency Change: Dimensions of Productivity Change in Yugoslavia, 1965-78," Economic Journal, Royal Economic Society, vol. 92(368), pages 920-936, December.
    34. Kyoji Fukao & Hyeog Ug Kwon, 2006. "Why Did Japan'S Tfp Growth Slow Down In The Lost Decade? An Empirical Analysis Based On Firm‐Level Data Of Manufacturing Firms," The Japanese Economic Review, Japanese Economic Association, vol. 57(2), pages 195-228, June.
    35. Jinghai Zheng & Zheng Wang & Jinchuan Shi, 2008. "Industrial productivity performance in Chinese regions (1987-2002): a decomposition approach," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 6(2), pages 157-175.
    36. Ilke Van Beveren, 2012. "Total Factor Productivity Estimation: A Practical Review," Journal of Economic Surveys, Wiley Blackwell, vol. 26(1), pages 98-128, February.
    37. Lai, Hung-pin & Kumbhakar, Subal C., 2018. "Endogeneity in panel data stochastic frontier model with determinants of persistent and transient inefficiency," Economics Letters, Elsevier, vol. 162(C), pages 5-9.
    38. Dan Andrews & Chiara Criscuolo & Peter N. Gal, 2016. "The Best versus the Rest: The Global Productivity Slowdown, Divergence across Firms and the Role of Public Policy," OECD Productivity Working Papers 5, OECD Publishing.
    39. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    40. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    41. Yair Mundlak, 1961. "Empirical Production Function Free of Management Bias," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 43(1), pages 44-56.
    42. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    43. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "The impact of the 2008 financial crisis on dynamic productivity growth of the Spanish food manufacturing industry. An impulse response analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 561-571, September.
    44. Bostian, Moriah & Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy, 2016. "Environmental investment and firm performance: A network approach," Energy Economics, Elsevier, vol. 57(C), pages 243-255.
    45. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    46. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181.
    47. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    48. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    49. Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
    50. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    51. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    52. Diana Aguiar & Leonardo Costa & Elvira Silva, 2017. "An Attempt To Explain Differences In Economic Growth: A Stochastic Frontier Approach," Bulletin of Economic Research, Wiley Blackwell, vol. 69(4), pages 42-65, October.
    53. Bell, Andrew & Jones, Kelvyn, 2015. "Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data," Political Science Research and Methods, Cambridge University Press, vol. 3(1), pages 133-153, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Ndicu & Dianah Ngui & Laura Barasa, 2024. "Technological Catch-Up, Innovation, and Productivity Analysis of National Innovation Systems in Developing Countries in Africa 2010–2018," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 7941-7967, June.
    2. Mariarosaria Agostino & Sabrina Ruberto, 2023. "Family Ties, Social Capital and Small Businesses’ Efficiency. Evidence from the Italian Food Sector," Journal of Family and Economic Issues, Springer, vol. 44(4), pages 935-955, December.
    3. García-Suarez, Federico, 2021. "Productivity and Efficiency in Uruguay: A Stochastic Approach," 2021 Conference, August 17-31, 2021, Virtual 313805, International Association of Agricultural Economists.
    4. Huynh, Linh & Hoang, Hien, 2021. "Technical Efficiency and Total Factor Productivity Changes in Manufacturing Industries: Recent Advancements in Stochastic Frontier Model Approach," MPRA Paper 117621, University Library of Munich, Germany, revised 2022.
    5. Mattsson, Pontus & Reshid, Abdulaziz, 2023. "Productivity divergence and the role of digitalisation," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 942-966.
    6. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pontus Mattsson & Jonas Mansson & William H. Greene, 2018. "TFP Change and its Components for Swedish Manufacturing Firms During the 2008-2009 Financial Crisis," Working Papers 18-27, New York University, Leonard N. Stern School of Business, Department of Economics.
    2. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    3. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).
    4. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    5. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    6. Rawat, Pankaj S. & Sharma, Seema, 2021. "TFP growth, technical efficiency and catch-up dynamics: Evidence from Indian manufacturing," Economic Modelling, Elsevier, vol. 103(C).
    7. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    8. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    9. Baležentis, Tomas & Sun, Kai, 2020. "Measurement of technical inefficiency and total factor productivity growth: A semiparametric stochastic input distance frontier approach and the case of Lithuanian dairy farms," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1174-1188.
    10. Badunenko, Oleg & Kumbhakar, Subal C., 2016. "When, where and how to estimate persistent and transient efficiency in stochastic frontier panel data models," European Journal of Operational Research, Elsevier, vol. 255(1), pages 272-287.
    11. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    12. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    13. Manuel Salas‐Velasco, 2020. "Assessing the performance of Spanish secondary education institutions: Distinguishing between transient and persistent inefficiency, separated from heterogeneity," Manchester School, University of Manchester, vol. 88(4), pages 531-555, July.
    14. Anbes Tenaye, 2020. "Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia," Economies, MDPI, vol. 8(2), pages 1-27, April.
    15. Huynh, Linh & Hoang, Hien, 2021. "Technical Efficiency and Total Factor Productivity Changes in Manufacturing Industries: Recent Advancements in Stochastic Frontier Model Approach," MPRA Paper 117621, University Library of Munich, Germany, revised 2022.
    16. Emilie Caldeira & Alou Adessé Dama & Ali Compaoré & Mario Mansour & Grégoire Rota-Graziosi, 2020. "Tax effort in Sub-Saharan African countries : evidence from a new dataset," Working Papers hal-02543162, HAL.
    17. Émilie Caldeira & Ali Compaore & Alou Adessé Dama & Mario Mansour & Grégoire Rota-Graziosi, 2019. "Effort fiscal en Afrique subsaharienne : les résultats d’une nouvelle base de données," Revue d’économie du développement, De Boeck Université, vol. 27(4), pages 5-51.
    18. Karanki, Fecri & Lim, Siew Hoon, 2021. "Airport use agreements and cost efficiency of U.S. airports," Transport Policy, Elsevier, vol. 114(C), pages 68-77.
    19. Bernstein, David H., 2020. "An updated assessment of technical efficiency and returns to scale for U.S. electric power plants," Energy Policy, Elsevier, vol. 147(C).
    20. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.

    More about this item

    Keywords

    Financial crisis; Manufacturing; Persistent and transient efficiency; Technical change; Total factor productivity;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • L80 - Industrial Organization - - Industry Studies: Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:53:y:2020:i:1:d:10.1007_s11123-019-00561-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.