IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v15y2012i3p490-515.html
   My bibliography  Save this article

Estimation of dynamic latent variable models using simulated non‐parametric moments

Author

Listed:
  • Michael Creel
  • Dennis Kristensen

Abstract

. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Michael Creel & Dennis Kristensen, 2012. "Estimation of dynamic latent variable models using simulated non‐parametric moments," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 490-515, October.
  • Handle: RePEc:wly:emjrnl:v:15:y:2012:i:3:p:490-515
    DOI: j.1368-423X.2012.00387.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1368-423X.2012.00387.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1368-423X.2012.00387.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zefang & Song, Xinyuan & Li, Yuan, 2023. "Bayesian Analysis of ARCH-M model with a dynamic latent variable," Econometrics and Statistics, Elsevier, vol. 28(C), pages 47-62.
    2. Michael Creel & Dennis Kristensen, "undated". "Indirect Likelihood Inference," Working Papers 558, Barcelona School of Economics.
    3. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    4. Heather L. R. Tierney, 2012. "Examining the ability of core inflation to capture the overall trend of total inflation," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 493-514, February.
    5. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    6. Tierney, Heather L.R., 2009. "A Local Examination for Persistence in Exclusions-from-Core Measures of Inflation Using Real-Time Data," MPRA Paper 13089, University Library of Munich, Germany.
    7. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    8. Creel, Michael & Kristensen, Dennis, 2015. "ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
    9. Tierney, Heather L.R., 2009. "Evaluating Exclusion-from-Core Measures of Inflation using Real-Time Data," MPRA Paper 17856, University Library of Munich, Germany.
    10. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    11. Mike G. Tsionas & Subal C. Kumbhakar, 2023. "Efficiency Measurement in Norwegian Electricity Distribution: A Generalized Four-Way-Error-Component Stochastic Frontier Model," The Energy Journal, , vol. 44(2), pages 181-204, March.
    12. Agnieszka Leszczynska, 2014. "Willingness to Pay for Green Products vs Ecological Value System," International Journal of Synergy and Research, ToKnowPress, vol. 3(1), pages 67-77.
    13. Michael Creel & Dennis Kristensen, 2013. "Indirect Likelihood Inference (revised)," UFAE and IAE Working Papers 931.13, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    14. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    15. Michael Creel, 2016. "A Note on Julia and MPI, with Code Examples," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 535-546, October.
    16. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:15:y:2012:i:3:p:490-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.