Analyzing the Potential Economic Value of Energy Storage
Author
Abstract
Suggested Citation
DOI: 10.5547/01956574.39.SI1.mgiu
Download full text from publisher
Other versions of this item:
- Monica Giulietti, Luigi Grossi, Elisa Trujillo Baute, and Michael Waterson, 2018. "Analyzing the Potential Economic Value of Energy Storage," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Lisa Flatley & Monica Giulietti & Luigi Grossi & Elisa Trujillo-Baute & Michael Waterson, 2016. "Analysing the potential economic value of energy storage," Working Papers 2016/2, Institut d'Economia de Barcelona (IEB).
References listed on IDEAS
- Grossi, Luigi & Heim, Sven & Waterson, Michael, 2014.
"A vision of the European energy future? The impact of the German response to the Fukushima earthquake,"
ZEW Discussion Papers
14-051, ZEW - Leibniz Centre for European Economic Research.
- Grossi, Luigi & Heim, Sven & Waterson, Michael, 2014. "A vision of the European energy future? The impact of the German response to the Fukushima earthquake," Economic Research Papers 270236, University of Warwick - Department of Economics.
- Grossi, Luigi & Heim, Sven & Waterson, Michael, 2014. "A vision of the European energy future? The impact of the German response to the Fukushima earthquake," The Warwick Economics Research Paper Series (TWERPS) 1047, University of Warwick, Department of Economics.
- Flatley, Lisa & MacKay, Robert S. & Waterson, Michael, 2014.
"Optimal strategies for operating energy storage in an arbitrage market,"
Economic Research Papers
270235, University of Warwick - Department of Economics.
- Flatley, Lisa & Mackay, Robert & Waterson, Michael, 2014. "Optimal strategies for operating energy storage in an arbitrage market," The Warwick Economics Research Paper Series (TWERPS) 1048, University of Warwick, Department of Economics.
- Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
- Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
- Williams, Olayinka & Green, Richard, 2022. "Electricity storage and market power," Energy Policy, Elsevier, vol. 164(C).
- Csereklyei, Zsuzsanna & Kallies, Anne & Diaz Valdivia, Andres, 2021. "The status of and opportunities for utility-scale battery storage in Australia: A regulatory and market perspective," Utilities Policy, Elsevier, vol. 73(C).
- Intini, Mario & Waterson, Michael, 2020.
"Do British wind generators behave strategically in response to the Western Link interconnector?,"
The Warwick Economics Research Paper Series (TWERPS)
1242, University of Warwick, Department of Economics.
- Intini, Mario & Waterson, Michael, 2020. "Do British wind generators behave strategically in response to the Western Link interconnector?," CAGE Online Working Paper Series 455, Competitive Advantage in the Global Economy (CAGE).
- Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
- Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
- Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
- Diego Aineto & Javier Iranzo-Sánchez & Lenin G. Lemus-Zúñiga & Eva Onaindia & Javier F. Urchueguía, 2019. "On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market," Energies, MDPI, vol. 12(11), pages 1-20, May.
- Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
- Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
- Albert Hiesl & Amela Ajanovic & Reinhard Haas, 2020. "On current and future economics of electricity storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1176-1192, December.
- Moita, Rodrigo & Monte, Daniel, 2022. "The limits in the adoption of batteries," Energy Economics, Elsevier, vol. 107(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
- Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
- Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
- Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
- Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
- Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
- Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere & Lionel Pin, 2023. "Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling," Post-Print hal-04182119, HAL.
- Simshauser, P. & Gohde, N., 2024. "3-Party Covenant Financing of ‘Semi-Regulated’ Pumped Hydro Assets," Cambridge Working Papers in Economics 2425, Faculty of Economics, University of Cambridge.
- Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Zhixian Wang & Ying Wang & Qia Ding & Chen Wang & Kaifeng Zhang, 2020. "Energy Storage Economic Analysis of Multi-Application Scenarios in an Electricity Market: A Case Study of China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
- Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
- Esteban, Miguel & Portugal-Pereira, Joana & Mclellan, Benjamin C. & Bricker, Jeremy & Farzaneh, Hooman & Djalilova, Nigora & Ishihara, Keiichi N. & Takagi, Hiroshi & Roeber, Volker, 2018. "100% renewable energy system in Japan: Smoothening and ancillary services," Applied Energy, Elsevier, vol. 224(C), pages 698-707.
- Hu, Yu & Armada, Miguel & Jesús Sánchez, María, 2022. "Potential utilization of battery energy storage systems (BESS) in the major European electricity markets," Applied Energy, Elsevier, vol. 322(C).
- Schill, Wolf-Peter, 2014.
"Residual Load, Renewable Surplus Generation and Storage Requirements in Germany,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
- Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
- Wolf-Peter Schill, 2013. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," Discussion Papers of DIW Berlin 1316, DIW Berlin, German Institute for Economic Research.
- Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
- Sovacool, Benjamin K., 2017. "Contestation, contingency, and justice in the Nordic low-carbon energy transition," Energy Policy, Elsevier, vol. 102(C), pages 569-582.
- Jun Zhao & Xiaonan Wang & Jinsheng Chu, 2022. "The Strategies for Increasing Grid-Integrated Share of Renewable Energy with Energy Storage and Existing Coal Fired Power Generation in China," Energies, MDPI, vol. 15(13), pages 1-18, June.
- Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
- Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
- Lin, Boqiang & Wu, Wei & Bai, Mengqi & Xie, Chunping & Radcliffe, Jonathan, 2019. "Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market," Energy Economics, Elsevier, vol. 78(C), pages 647-655.
More about this item
Keywords
Arbitrage; electricity markets; energy storage; market clearing; price forecasting;All these keywords.
JEL classification:
- L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
- L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
- H54 - Public Economics - - National Government Expenditures and Related Policies - - - Infrastructures
- D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
- Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:39:y:2018:i:1_suppl:p:101-122. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.