IDEAS home Printed from https://ideas.repec.org/a/sae/emffin/v9y2010i3p325-345.html
   My bibliography  Save this article

Evaluating Stock Index Return Value-at-Risk Estimates in South Africa

Author

Listed:
  • David McMillan

    (David McMillan, School of Management, University of St Andrews, The Gateway, North Haugh, St Andrews, KY16 9SS, United Kingdom. E-mail: dgm6@st-andrews.ac.uk)

  • Pako Thupayagale

    (Pako Thupayagale, School of Management, University of St Andrews, United Kingdom.)

Abstract

This article evaluates the performance of a range of alternative volatility models in forecasting volatility and value-at-risk (VaR) in the context of the Basle regulatory framework, using stock index return data from South Africa. We extend the current research in emerging markets by considering a wider selection of GARCH-based models, including a variety of asymmetric and long memory models. Our results suggest that models incorporating both asymmetric and long memory attributes generally outperform all other methods in estimating VaR across the three percentiles we considered. These findings are similar to the volatility forecasting exercise we also conduct. More generally, we find that the standard RiskMetrics model is consistently outperformed by all the GARCH-type models we have analysed in the context of VaR modelling. Finally, our results emphasise the importance of using the stringent probability criteria prescribed by the Basle regulatory framework, and of employing out-of-sample forecast evaluation techniques for the selection of forecasting models that provide accurate VaR estimates.

Suggested Citation

  • David McMillan & Pako Thupayagale, 2010. "Evaluating Stock Index Return Value-at-Risk Estimates in South Africa," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(3), pages 325-345, December.
  • Handle: RePEc:sae:emffin:v:9:y:2010:i:3:p:325-345
    DOI: 10.1177/097265271000900304
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/097265271000900304
    Download Restriction: no

    File URL: https://libkey.io/10.1177/097265271000900304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    2. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    3. Turan G. Bali, 2003. "An Extreme Value Approach to Estimating Volatility and Value at Risk," The Journal of Business, University of Chicago Press, vol. 76(1), pages 83-108, January.
    4. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    5. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    6. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    7. Koustas, Zisimos & Serletis, Apostolos, 2005. "Rational bubbles or persistent deviations from market fundamentals?," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2523-2539, October.
    8. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
    9. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Bervas, A., 2006. "Market liquidity and its incorporation into risk management," Financial Stability Review, Banque de France, issue 8, pages 63-79, May.
    14. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    2. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
    5. Timmy Elenjical & Patrick Mwangi & Barry Panulo & Chun-Sung Huang, 2016. "A comparative cross-regime analysis on the performance of GARCH-based value-at-risk models: Evidence from the Johannesburg stock exchange," Risk Management, Palgrave Macmillan, vol. 18(2), pages 89-110, August.
    6. McMillan, David G. & Kambouroudis, Dimos, 2009. "Are RiskMetrics forecasts good enough? Evidence from 31 stock markets," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 117-124, June.
    7. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.
    8. Angelidis, Timotheos & Degiannakis, Stavros, 2007. "Backtesting VaR Models: A Τwo-Stage Procedure," MPRA Paper 96327, University Library of Munich, Germany.
    9. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    10. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    11. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
    12. Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.
    13. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    14. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    15. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    16. Twm Evans & David McMillan, 2007. "Volatility forecasts: the role of asymmetric and long-memory dynamics and regional evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 17(17), pages 1421-1430.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    18. Nico Katzke & Chris Garbers, 2015. "Do Long Memory and Asymmetries Matter When Assessing Downside Return Risk?," Working Papers 06/2015, Stellenbosch University, Department of Economics.
    19. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
    20. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.

    More about this item

    Keywords

    JEL Classification: C22; JEL Classification: G13; Volatility forecast; market risk; GARCH model;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:emffin:v:9:y:2010:i:3:p:325-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.ifmr.ac.in .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.