IDEAS home Printed from https://ideas.repec.org/a/eee/inteco/v157y2019icp179-202.html
   My bibliography  Save this article

The accuracy of asymmetric GARCH model estimation

Author

Listed:
  • Charles, Amélie
  • Darné, Olivier

Abstract

This paper reviews eight software packages when estimating asymmetric GARCH models (from their default option). We consider the numerical consistency of GJR-GARCH, TGARCH, EGARCH and APARCH estimations with Normal and Student distributions as well as out-of-sample forecasting accuracy, using the model confidence set procedure. We show that results are clearly software-dependent for both asymmetric volatility models, especially for the t-ratios. The out-of-sample forecast results show that the differences in estimating symmetric and asymmetric GARCH models imply slight differences in terms of forecast accuracy, not statistically significant, except in few cases from the QLIKE loss function. Further, the results indicate that the different specifications of the asymmetric GARCH-type models used by the different packages appear to have no significant effect on their forecast accuracy.

Suggested Citation

  • Charles, Amélie & Darné, Olivier, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, Elsevier, vol. 157(C), pages 179-202.
  • Handle: RePEc:eee:inteco:v:157:y:2019:i:c:p:179-202
    DOI: 10.1016/j.inteco.2018.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2110701718300611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.inteco.2018.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. He, Changli & Teräsvirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(4), pages 868-885, August.
    2. Guillaume Gaetan Martinet & Michael McAleer, 2018. "On the invertibility of EGARCH(p, q)," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 824-849, September.
    3. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    4. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    5. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Ng, Hock Guan & McAleer, Michael, 2004. "Recursive modelling of symmetric and asymmetric volatility in the presence of extreme observations," International Journal of Forecasting, Elsevier, vol. 20(1), pages 115-129.
    8. Gita Persand & Chris Brooks & Simon P. Burke, 2003. "Multivariate GARCH models: software choice and estimation issues," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 725-734.
    9. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    10. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    11. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    12. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(3), pages 722-729, June.
    13. Chang, Chia-Lin & McAleer, Michael, 2017. "The correct regularity condition and interpretation of asymmetry in EGARCH," Economics Letters, Elsevier, vol. 161(C), pages 52-55.
    14. Leonard E. Burman & W. Robert Reed & James Alm, 2011. "A Call for Replication Studies," Public Finance Review, , vol. 39(1), pages 190-190, January.
    15. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
    16. Michael A. Clemens, 2017. "The Meaning Of Failed Replications: A Review And Proposal," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 326-342, February.
    17. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    18. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    19. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    20. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    21. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, July.
    22. Michael McAleer, 2014. "Asymmetry and Leverage in Conditional Volatility Models," Econometrics, MDPI, vol. 2(3), pages 1-6, September.
    23. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    24. Brooks, Chris & Burke, Simon P. & Persand, Gita, 2001. "Benchmarks and the accuracy of GARCH model estimation," International Journal of Forecasting, Elsevier, vol. 17(1), pages 45-56.
    25. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
    26. Carnero, M. Angeles & Peña, Daniel & Ruiz, Esther, 2012. "Estimating GARCH volatility in the presence of outliers," Economics Letters, Elsevier, vol. 114(1), pages 86-90.
    27. M. Angeles Carnero & Ana Pérez & Esther Ruiz, 2016. "Identification of asymmetric conditional heteroscedasticity in the presence of outliers," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 179-201, March.
    28. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    29. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    30. repec:bla:jecsur:v:16:y:2002:i:3:p:447-85 is not listed on IDEAS
    31. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    32. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    33. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    34. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    35. Marco J. Lombardi & Giampiero M. Gallo, 2002. "Analytic Hessian matrices and the computation of FIGARCH estimates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(2), pages 247-264, June.
    36. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 637-668, September.
    37. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    38. Calzolari, Giorgio & Fiorentini, Gabriele & Panattoni, Lorenzo, 1993. "Alternative estimators of the covariance matrix in GARCH models," MPRA Paper 24433, University Library of Munich, Germany.
    39. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    40. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    41. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    42. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    43. Sébastien Laurent, 2004. "Analytical Derivates of the APARCH Model," Computational Economics, Springer;Society for Computational Economics, vol. 24(1), pages 51-57, August.
    44. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
    45. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neenu Chalissery & Suhaib Anagreh & Mohamed Nishad T. & Mosab I. Tabash, 2022. "Mapping the Trend, Application and Forecasting Performance of Asymmetric GARCH Models: A Review Based on Bibliometric Analysis," JRFM, MDPI, vol. 15(9), pages 1-23, September.
    2. Abuzayed, Bana & Bouri, Elie & Al-Fayoumi, Nedal & Jalkh, Naji, 2021. "Systemic risk spillover across global and country stock markets during the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 180-197.
    3. Yuyun Hidayat & Titi Purwandari & Sukono & Igif Gimin Prihanto & Rizki Apriva Hidayana & Riza Andrian Ibrahim, 2023. "Mean-Value-at-Risk Portfolio Optimization Based on Risk Tolerance Preferences and Asymmetric Volatility," Mathematics, MDPI, vol. 11(23), pages 1-26, November.
    4. Paul R. Dewick, 2022. "On Financial Distributions Modelling Methods: Application on Regression Models for Time Series," JRFM, MDPI, vol. 15(10), pages 1-15, October.
    5. Pal, Debdatta, 2022. "Does hospitality industry stock volatility react asymmetrically to health and economic crises?," Economic Modelling, Elsevier, vol. 108(C).
    6. Michael Graham & Jussi Nikkinen & Jarkko Peltomäki, 2020. "Web-Based Investor Fear Gauge and Stock Market Volatility: An Emerging Market Perspective," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 19(2), pages 127-153, August.
    7. Abuzayed, Bana & Al-Fayoumi, Nedal, 2021. "Risk spillover from crude oil prices to GCC stock market returns: New evidence during the COVID-19 outbreak," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    8. Mateusz Tomal, 2021. "Modelling the Impact of Different COVID-19 Pandemic Waves on Real Estate Stock Returns and Their Volatility Using a GJR-GARCHX Approach: An International Perspective," JRFM, MDPI, vol. 14(8), pages 1-8, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:wpaper:hal-01943883 is not listed on IDEAS
    2. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," Post-Print hal-01943883, HAL.
    3. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    4. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    6. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    7. Carnero, M. Angeles & Pérez, Ana, 2019. "Leverage effect in energy futures revisited," Energy Economics, Elsevier, vol. 82(C), pages 237-252.
    8. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    9. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    10. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    11. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    12. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    14. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    15. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    16. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    17. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    18. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    19. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    20. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    21. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.

    More about this item

    Keywords

    EGARCH; GJR-GARCH; TARCH; APARCH; Accuracy; Forecasting; Software;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:inteco:v:157:y:2019:i:c:p:179-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/21107017 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.