IDEAS home Printed from https://ideas.repec.org/a/rom/terumm/v10y2015i1p55-71.html
   My bibliography  Save this article

Urban expansion assessment by using remotely sensed data and the relative Shannon entropy model in GIS: A case study of Tripoli, Libya

Author

Listed:
  • Abubakr A. A. ALSHARIF

    (University Putra Malaysia, 43400, UPM, Serdang, Malaysia)

  • Biswajeet PRADHAN

    (University Putra Malaysia, 43400, UPM, Serdang)

  • Shattri MANSOR

    (University Putra Malaysia, 43400, UPM, Serdang, Malaysia)

  • Helmi Zulhaidi Mohd SHAFRI

    (University Putra Malaysia, 43400, UPM, Serdang, Malaysia)

Abstract

Urban growth is a spatial dynamic phenomenon that indicates population growth, economic expansion, city importance level, and so on. The use of current and historical data in urbanization analysis is necessary in urban spatial studies and future urban planning. This research aims to study, examine, and assess the urban expansion of Tripoli spatially and temporally by using remotely sensed data, geographic information systems (GIS), and the statistical relative Shannon entropy model. Remotely sensed data (four satellite images from 1984, 1996, 2002, and 2010) and GIS were used to determine the extent of urban area and urban growth in Tripoli in five different directions. Shannon’s entropy model was implemented to analyze and assess urban expansion trends as a process and pattern in the study area. Results show that the Tripoli metropolitan area has a high level of sprawl along its urban expansion history. The hypothesis employed for Shannon’s entropy zone division produces good insights on overall urban growth, urban growth direction, and specific urban growth over time. The obtained results provide good guidance for modeling urban sprawl processes, understanding urbanization causative factors, and predicting future urban patterns. Furthermore, the findings of current paper can be used by decision makers and urban planners to identify past and present urban expansions tendencies to prepare for future urban demands.

Suggested Citation

  • Abubakr A. A. ALSHARIF & Biswajeet PRADHAN & Shattri MANSOR & Helmi Zulhaidi Mohd SHAFRI, 2015. "Urban expansion assessment by using remotely sensed data and the relative Shannon entropy model in GIS: A case study of Tripoli, Libya," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 10(1), pages 55-71, February.
  • Handle: RePEc:rom:terumm:v:10:y:2015:i:1:p:55-71
    as

    Download full text from publisher

    File URL: https://um.ase.ro/no101/5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T.V. Ramachandra & H. A. Bharath & M. V. Sowmyashree, 2013. "Analysis Of Spatial Patterns Of Urbanisation Using Geoinformatics And Spatial Metrics," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 8(4), pages 5-24, November.
    2. Michael Oloyede ALABI, 2009. "Urban Sprawl, Pattern And Measurement In Lokoja, Nigeria," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 4(4(13)), pages 158-164, November.
    3. Cristina ALPOPI & Cristina MANOLE & Sofia Elena COLESCA, 2011. "Assessment Of The Sustainable Urban Development Level Through The Use Of Indicators Of Sustainability," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(2), pages 78-87, May.
    4. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Getu, Kenu & Bhat, H Gangadhara, 2021. "Analysis of spatio-temporal dynamics of urban sprawl and growth pattern using geospatial technologies and landscape metrics in Bahir Dar, Northwest Ethiopia," Land Use Policy, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreea Ileana Zamfir, 2011. "Management Of Renewable Energy And Regional Development: European Experiences And Steps Forward," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(3), pages 35-42, August.
    2. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    3. R. O. E. Ulakpa & V.U.D. Okwu & K. E. Chukwu & M. O. Eyankware, 2020. "Landslide Susceptibility Modelling In Selected States Across Se. Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 23-27, March.
    4. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    5. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    6. Armenia Androniceanu, 2012. "Civil Servants Career Development in the Romanian Central Public Administration," REVISTA ADMINISTRATIE SI MANAGEMENT PUBLIC, Faculty of Administration and Public Management, Academy of Economic Studies, Bucharest, Romania, vol. 2012(19), pages 43-52, December.
    7. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    8. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    9. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    10. Sandeep Kumar & Vikram Gupta, 2021. "Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2461-2488, December.
    11. Hailang He & Weiwei Wang & Zhengxing Wang & Shu Li & Jianguo Chen, 2024. "Enhancing Seismic Landslide Susceptibility Analysis for Sustainable Disaster Risk Management through Machine Learning," Sustainability, MDPI, vol. 16(9), pages 1-24, May.
    12. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    13. Jean Baptiste Nsengiyumva & Geping Luo & Egide Hakorimana & Richard Mind'je & Aboubakar Gasirabo & Valentine Mukanyandwi, 2019. "Comparative Analysis of Deterministic and Semiquantitative Approaches for Shallow Landslide Risk Modeling in Rwanda," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2576-2595, November.
    14. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    15. Vassiliki BOULOMYTIS & Monzur Alam IMTEAZ & Antonio Carlos ZUFFO & Claudia Durand ALVES, 2016. "Analysis Of The Urbanisation Effects On The Increase Of Flood Susceptibility In Coastal Areas," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 11(4), pages 30-45, November.
    16. Idris Bello Yamusa & Mohd Suhaili Ismail & Abdulwaheed Tella, 2022. "Highway Proneness Appraisal to Landslides along Taiping to Ipoh Segment Malaysia, Using MCDM and GIS Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    17. Fang‐Li Ruan & Liang Yan, 2022. "Challenges facing indicators to become a universal language for sustainable urban development," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 41-57, February.
    18. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    19. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    20. Adam Przybyłowski & Agnieszka Kałaska & Piotr Przybyłowski, 2022. "Quest for a Tool Measuring Urban Quality of Life: ISO 37120 Standard Sustainable Development Indicators," Energies, MDPI, vol. 15(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rom:terumm:v:10:y:2015:i:1:p:55-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Colesca Sofia (email available below). General contact details of provider: https://edirc.repec.org/data/ccasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.