IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2010i3p93-106.html
   My bibliography  Save this article

Modeling the Dependency Structure of Stock Index Returns using a Copula Function Approach

Author

Listed:
  • Necula, Ciprian

    (DOFIN, Academy of Economic Studies, Bucharest; Center for Advanced Research in Finance and Banking (CARFIB); Centrul de Analiza si Prognoza Economico-Financiara (CAPEF))

Abstract

In the present study we assess the dependency structure between stock indexes by econometrically estimating the empirical copula function and the parameters of various parametric copula functions. The main finding is that the t-copula and the Gumbel-Clayton mixture copula are the most appropriate copula functions to capture the dependency structure of two financial return series. With the dependency structure given by the estimated copula functions we quantify the efficient portfolio frontier using as a risk measure CVaR (Conditional VaR) computed by Monte Carlo simulation. We find that in the case of using normal distributions for modeling individual returns the market risk is underestimated no mater what copula function is employed to capture the dependency structure.

Suggested Citation

  • Necula, Ciprian, 2010. "Modeling the Dependency Structure of Stock Index Returns using a Copula Function Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 93-106, September.
  • Handle: RePEc:rjr:romjef:v::y:2010:i:3:p:93-106
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef3_10/rjef3_10_5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Necula, Ciprian, 2009. "Modeling Heavy-Tailed Stock Index Returns Using the Generalized Hyperbolic Distribution," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 6(2), pages 118-131, June.
    2. Jean-David FERMANIAN & Olivier SCAILLET, 2003. "Nonparametric Estimation of Copulas for Time Series," FAME Research Paper Series rp57, International Center for Financial Asset Management and Engineering.
    3. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dajcman, Silvio & Festic, Mejra, 2012. "The Interdependence of the Stock Markets of Slovenia, The Czech Republic and Hungary with Some Developed European Stock Markets – The Effects of Joining the European Union and the Global Financial Cri," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 163-180, December.
    2. Mitica Pepi, 2022. "The Interdependence of the Stock Markets Developed in Central and Eastern- European Stock Markets - Represented by the Stock Indices," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 995-1000, Decembrie.
    3. See-Woo Kim & Yong-Ki Ma & Ciprian Necula, 2023. "Modeling Tail Dependence Using Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 129-147, June.
    4. Silvo Dajcman, 2013. "Dependence between Croatian and European stock markets – A copula GARCH approach," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 31(2), pages 209-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    2. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    3. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    4. Jinglun Yao & Sabine Laurent & Brice B'enaben, 2017. "Managing Volatility Risk: An Application of Karhunen-Lo\`eve Decomposition and Filtered Historical Simulation," Papers 1710.00859, arXiv.org.
    5. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    6. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    7. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    8. Choo, Weihao & de Jong, Piet, 2016. "Insights to systematic risk and diversification across a joint probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 142-150.
    9. Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
    10. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.
    11. Budhi Surya & Ryan Kurniawan, 2014. "Optimal Portfolio Selection Based on Expected Shortfall Under Generalized Hyperbolic Distribution," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(3), pages 193-236, September.
    12. Suparna Biswas & Rituparna Sen, 2019. "Kernel Based Estimation of Spectral Risk Measures," Papers 1903.03304, arXiv.org, revised Dec 2023.
    13. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    14. Davide Ferrari & Sandra Paterlini, 2009. "The Maximum Lq-Likelihood Method: An Application to Extreme Quantile Estimation in Finance," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 3-19, March.
    15. Li, Hengxin & Wang, Ruodu, 2023. "PELVE: Probability Equivalent Level of VaR and ES," Journal of Econometrics, Elsevier, vol. 234(1), pages 353-370.
    16. Daniel Dimitrov & Sweder van Wijnbergen, 2023. "Quantifying Systemic Risk in the Presence of Unlisted Banks: Application to the European Banking Sector," Working Papers 768, DNB.
    17. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    18. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    19. Homm, Ulrich & Pigorsch, Christian, 2012. "Beyond the Sharpe ratio: An application of the Aumann–Serrano index to performance measurement," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2274-2284.
    20. Francis Liu & Natalie Packham & Meng-Jou Lu & Wolfgang Karl Härdle, 2023. "Hedging cryptos with Bitcoin futures," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 819-841, May.

    More about this item

    Keywords

    copula functions; copula mixtures; the efficient portfolio frontier; Conditional VAR; Monte Carlo simulation;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2010:i:3:p:93-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.