IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v234y2023i1p353-370.html
   My bibliography  Save this article

PELVE: Probability Equivalent Level of VaR and ES

Author

Listed:
  • Li, Hengxin
  • Wang, Ruodu

Abstract

In the recent Fundamental Review of the Trading Book (FRTB), the Basel Committee on Banking Supervision proposed the shift from the 99% Value-at-Risk (VaR) to the 97.5% Expected Shortfall (ES) for internal models in market risk assessment. Inspired by the above transition, we introduce a new distributional index, the probability equivalence level of VaR and ES (PELVE), which identifies the balancing point for the equivalence between VaR and ES. PELVE enjoys many desirable theoretical properties and it distinguishes empirically heavy-tailed distributions from light-tailed ones via a threshold of 2.72. Convergence properties and asymptotic normality of the empirical PELVE estimators are established. Applying PELVE to financial asset and portfolio data leads to interesting observations that are not captured by VaR or ES alone. We find that, in general, the transition from VaR to ES in the FRTB yields an increase in risk capital for single-asset portfolios, but for well-diversified portfolios, the capital requirement remains almost unchanged. This leads to both a theoretical justification and an empirical evidence for the conclusion that the use of ES rewards portfolio diversification more than the use of VaR.

Suggested Citation

  • Li, Hengxin & Wang, Ruodu, 2023. "PELVE: Probability Equivalent Level of VaR and ES," Journal of Econometrics, Elsevier, vol. 234(1), pages 353-370.
  • Handle: RePEc:eee:econom:v:234:y:2023:i:1:p:353-370
    DOI: 10.1016/j.jeconom.2021.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Chew, Soo Hong, 1983. "A Generalization of the Quasilinear Mean with Applications to the Measurement of Income Inequality and Decision Theory Resolving the Allais Paradox," Econometrica, Econometric Society, vol. 51(4), pages 1065-1092, July.
    4. Andersen, Torben G. & Todorov, Viktor & Ubukata, Masato, 2021. "Tail risk and return predictability for the Japanese equity market," Journal of Econometrics, Elsevier, vol. 222(1), pages 344-363.
    5. Luting Li & Hao Xing, 2018. "Capital allocation under the Fundamental Review of Trading Book," Papers 1801.07358, arXiv.org, revised Jan 2019.
    6. Paul Embrechts & Haiyan Liu & Tiantian Mao & Ruodu Wang, 2017. "Quantile-Based Risk Sharing with Heterogeneous Beliefs," Swiss Finance Institute Research Paper Series 17-65, Swiss Finance Institute, revised Jan 2018.
    7. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    8. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    9. Danielsson, Jon & Zhou, Chen, 2015. "Why risk is so hard to measure," LSE Research Online Documents on Economics 62002, London School of Economics and Political Science, LSE Library.
    10. Michael Grabchak & Gennady Samorodnitsky, 2010. "Do financial returns have finite or infinite variance? A paradox and an explanation," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 883-893.
    11. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    12. Vali Asimit & Liang Peng & Ruodu Wang & Alex Yu, 2019. "An efficient approach to quantile capital allocation and sensitivity analysis," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1131-1156, October.
    13. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    14. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    17. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    18. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    19. Chen, Yu & Wang, Zhicheng & Zhang, Zhengjun, 2019. "Mark to market value at risk," Journal of Econometrics, Elsevier, vol. 208(1), pages 299-321.
    20. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bignozzi, Valeria & Merlo, Luca & Petrella, Lea, 2024. "Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 44-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    2. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    3. Ruodu Wang & Johanna F. Ziegel, 2021. "Scenario-based risk evaluation," Finance and Stochastics, Springer, vol. 25(4), pages 725-756, October.
    4. Xia Han & Liyuan Lin & Ruodu Wang, 2023. "Diversification quotients based on VaR and ES," Papers 2301.03517, arXiv.org, revised May 2023.
    5. Han, Xia & Lin, Liyuan & Wang, Ruodu, 2023. "Diversification quotients based on VaR and ES," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 185-197.
    6. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org.
    7. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    8. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    9. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    10. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    11. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    12. Timo Dimitriadis & Yannick Hoga, 2023. "Regressions under Adverse Conditions," Papers 2311.13327, arXiv.org, revised Jul 2024.
    13. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2022. "Ordering and inequalities for mixtures on risk aggregation," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 421-451, January.
    14. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    15. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    16. Qiuqi Wang & Ruodu Wang & Johanna Ziegel, 2022. "E-backtesting," Papers 2209.00991, arXiv.org, revised Aug 2024.
    17. Qiuqi Wang & Ruodu Wang & Ricardas Zitikis, 2021. "Risk measures induced by efficient insurance contracts," Papers 2109.00314, arXiv.org, revised Sep 2021.
    18. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    19. Paul Embrechts & Alexander Schied & Ruodu Wang, 2018. "Robustness in the Optimization of Risk Measures," Papers 1809.09268, arXiv.org, revised Feb 2021.
    20. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:234:y:2023:i:1:p:353-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.