IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v7y2015i4p205-217.html
   My bibliography  Save this article

Improving the Effectiveness of Maximum Score Estimators for Binary Regression Models

Author

Listed:
  • Marcin Owczarczuk

    (Warsaw School of Economics)

Abstract

Maximum score estimation is a class of semiparametric methods for the coefficients of regression models. Estimates are obtained by the maximization of the special function, called the score. In case of binary regression models it is the fraction of correctly classified observations. The aim of this article is to propose a modification to the score function. The modification allows to obtain smaller variances of estimators than the standard maximum score method without impacting other properties like consistency. The study consists of extensive Monte Carlo experiments.

Suggested Citation

  • Marcin Owczarczuk, 2015. "Improving the Effectiveness of Maximum Score Estimators for Binary Regression Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(4), pages 205-217, December.
  • Handle: RePEc:psc:journl:v:7:y:2015:i:4:p:205-217
    as

    Download full text from publisher

    File URL: http://cejeme.org/publishedarticles/2015-25-16-635858655030468750-7535.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Owczarczuk, 2009. "Maximum Score Type Estimators," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(1), pages 7-34, March.
    2. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    3. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    4. Horowitz, Joel L., 2002. "Bootstrap critical values for tests based on the smoothed maximum score estimator," Journal of Econometrics, Elsevier, vol. 111(2), pages 141-167, December.
    5. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    6. Moon, Hyungsik Roger, 2004. "Maximum score estimation of a nonstationary binary choice model," Journal of Econometrics, Elsevier, vol. 122(2), pages 385-403, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    2. Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
    3. Marcin Owczarczuk, 2009. "Maximum Score Type Estimators," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(1), pages 7-34, March.
    4. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    5. Chen, Xirong & Gao, Wenzheng & Li, Zheng, 2018. "A data-driven bandwidth selection method for the smoothed maximum score estimator," Economics Letters, Elsevier, vol. 170(C), pages 24-26.
    6. Yan, Jin & Yoo, Hong Il, 2019. "Semiparametric estimation of the random utility model with rank-ordered choice data," Journal of Econometrics, Elsevier, vol. 211(2), pages 414-438.
    7. Francisco Alvarez-Cuadrado, 2006. "Improving The Efficiency And Robustness Of The Smoothed Maximum Score Estimator," Departmental Working Papers 2004-01, McGill University, Department of Economics.
    8. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    9. Sadat Reza & Paul Rilstone, 2019. "Smoothed Maximum Score Estimation of Discrete Duration Models," JRFM, MDPI, vol. 12(2), pages 1-16, April.
    10. Horowitz, Joel L., 2004. "Semiparametric models," Papers 2004,17, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    11. Le-Yu Chen & Jerzy Szroeter, 2009. "Hypothesis testing of multiple inequalities: the method of constraint chaining," CeMMAP working papers CWP13/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Yannis Bilias & Michael Haliassos, 2004. "The Distribution of Gains from Access to Stocks," CSEF Working Papers 125, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    14. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    15. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    16. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    17. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    18. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    19. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    21. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    22. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.

    More about this item

    Keywords

    maximum score estimation; Monte Carlo experiments; effectiveness;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:7:y:2015:i:4:p:205-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.