IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v5y2013i1p65-83.html
   My bibliography  Save this article

A Long-Run Relationship between Daily Prices on Two Markets: The Bayesian VAR(2)–MSF-SBEKK Model

Author

Listed:
  • Krzysztof Osiewalski
  • Jacek Osiewalski

    (Cracow University of Economics)

Abstract

We develop a fully Bayesian framework for analysis and comparison of two competing approaches to modelling daily prices on different markets. The first approach, prevailing in financial econometrics, amounts to assuming that logarithms of prices behave like a multivariate random walk; this approach describes logarithmic returns most often by the VAR(1) model with MGARCH (or sometimes MSV) disturbances. In the second approach, considered here, it is assumed that daily price levels are linked together and, thus, the error correction term is added to the usual VAR(1)–MGARCH or VAR(1)–MSV model for logarithmic returns, leading to a reduced rank VAR(2) specification for logarithms of prices. The model proposed in the paper uses a hybrid MSVMGARCH structure for VAR(2) disturbances. In order to keep cointegration modelling as simple as possible, we restrict to the case of two prices representing two different markets. The aim of the paper is to show how to check if a long-run relationship between daily prices exists and whether taking it into account influences our inference on volatility and short-run relations between returns on different markets. In the empirical example the daily values of the S&P500 index and the WTI oil price in the period 19.12.2005 – 30.09.2011 are jointly modelled. It is shown that, although the logarithms of the values of S&P500 and WTI oil price seem to be cointegrated, neglecting the error correction term leads to practically the same conclusions on volatility and conditional correlation as keeping it in the model.

Suggested Citation

  • Krzysztof Osiewalski & Jacek Osiewalski, 2013. "A Long-Run Relationship between Daily Prices on Two Markets: The Bayesian VAR(2)–MSF-SBEKK Model," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(1), pages 65-83, March.
  • Handle: RePEc:psc:journl:v:5:y:2013:i:1:p:65-83
    as

    Download full text from publisher

    File URL: http://cejeme.eu/publishedarticles/2013-05-20-635099547288125000-9406.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strachan, Rodney W, 2003. "Valid Bayesian Estimation of the Cointegrating Error Correction Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 185-195, January.
    2. Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(2), pages 179-202, November.
    3. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    4. Anna Pajor, 2011. "A Bayesian Analysis of Exogeneity in Models with Latent Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 3(2), pages 49-73, June.
    5. Chang, Chiao-Yi & Lai, Jing-Yi & Chuang, I-Yuan, 2010. "Futures hedging effectiveness under the segmentation of bear/bull energy markets," Energy Economics, Elsevier, vol. 32(2), pages 442-449, March.
    6. Ji, Qiang & Fan, Ying, 2011. "A dynamic hedging approach for refineries in multiproduct oil markets," Energy, Elsevier, vol. 36(2), pages 881-887.
    7. Gary Koop & Roberto León-González & Rodney W. Strachan, 2010. "Efficient Posterior Simulation for Cointegrated Models with Priors on the Cointegration Space," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 224-242, April.
    8. Mahadevan, Renuka & Suardi, Sandy, 2011. "The effects of uncertainty dynamics on exports, imports and productivity growth," Journal of Asian Economics, Elsevier, vol. 22(2), pages 174-188, April.
    9. Krzysztof Osiewalski & Jacek Osiewalski, 2012. "Missing observations in daily returns - Bayesian inference within the MSF-SBEKK model," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 169-197, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamil Makieia & Jacek Osiewalski, 2018. "Cost Efficiency Analysis of Electricity Distribution Sector under Model Uncertainty," The Energy Journal, , vol. 39(4), pages 31-56, July.
    2. Jacek Osiewalski & Krzysztof Osiewalski, 2016. "Hybrid MSV-MGARCH Models – General Remarks and the GMSF-SBEKK Specification," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(4), pages 241-271, December.
    3. Pajor Anna & Wróblewska Justyna, 2017. "VEC-MSF models in Bayesian analysis of short- and long-run relationships," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-22, June.
    4. Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
    5. Makiela, Kamil & Ouattara, Bazoumana, 2018. "Foreign direct investment and economic growth: Exploring the transmission channels," Economic Modelling, Elsevier, vol. 72(C), pages 296-305.
    6. Kamil Makieła, 2014. "Bayesian Stochastic Frontier Analysis of Economic Growth and Productivity Change in the EU, USA, Japan and Switzerland," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(3), pages 193-216, September.
    7. Jerzy Marzec & Andrzej Pisulewski, 2017. "The Effect of CAP Subsidies on the Technical Efficiency of Polish Dairy Farms," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 243-273, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pajor Anna & Wróblewska Justyna, 2017. "VEC-MSF models in Bayesian analysis of short- and long-run relationships," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-22, June.
    2. Jacek Osiewalski & Krzysztof Osiewalski, 2016. "Hybrid MSV-MGARCH Models – General Remarks and the GMSF-SBEKK Specification," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(4), pages 241-271, December.
    3. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    4. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    5. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    6. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    7. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.
    8. Anna Pajor & Justyna Wróblewska, 2022. "Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 427-448, September.
    9. Justyna Wróblewska & Anna Pajor, 2019. "One-period joint forecasts of Polish inflation, unemployment and interest rate using Bayesian VEC-MSF models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(1), pages 23-45, March.
    10. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    11. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    12. repec:ipg:wpaper:2014-546 is not listed on IDEAS
    13. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    14. Tokic, Damir, 2011. "Rational destabilizing speculation, positive feedback trading, and the oil bubble of 2008," Energy Policy, Elsevier, vol. 39(4), pages 2051-2061, April.
    15. Silvério, Renan & Szklo, Alexandre, 2012. "The effect of the financial sector on the evolution of oil prices: Analysis of the contribution of the futures market to the price discovery process in the WTI spot market," Energy Economics, Elsevier, vol. 34(6), pages 1799-1808.
    16. Carlotta Penone & Elisa Giampietri & Samuele Trestini, 2022. "Futures–spot price transmission in EU corn markets," Agribusiness, John Wiley & Sons, Ltd., vol. 38(3), pages 679-709, July.
    17. Derick D. Quintino & Sergio A. David & Carlos E. de F. Vian, 2017. "Analysis of the Relationship between Ethanol Spot and Futures Prices in Brazil," IJFS, MDPI, vol. 5(2), pages 1-10, April.
    18. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    19. Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2008. "Bayesian inference in a cointegrating panel data model," Advances in Econometrics, in: Bayesian Econometrics, pages 433-469, Emerald Group Publishing Limited.
    20. Junior, Peterson Owusu & Tiwari, Aviral Kumar & Padhan, Hemachandra & Alagidede, Imhotep, 2020. "Analysis of EEMD-based quantile-in-quantile approach on spot- futures prices of energy and precious metals in India," Resources Policy, Elsevier, vol. 68(C).
    21. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.

    More about this item

    Keywords

    Bayesian econometrics; vector error correction model; hybrid MGARCH-MSV processes; financial markets; commodity markets;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:5:y:2013:i:1:p:65-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.