IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v3y2011i2p49-73.html
   My bibliography  Save this article

A Bayesian Analysis of Exogeneity in Models with Latent Variables

Author

Listed:
  • Anna Pajor

    (Cracow University of Economics)

Abstract

This paper presents some new results on exogeneity in models with latent variables. The concept of exogeneity is extended to the class of models with latent variables, in which a subset of parameters and latent variables is of interest. Exogeneity is discussed from the Bayesian point of view. We propose sufficient weak and strong exogeneity conditions in the vector error correction model (VECM) with stochastic volatility (SV) disturbances. Finally, an empirical illustration based on the VECM-SV model for the daily growth rates of two main official Polish exchange rates: USD/PLN and EUR/PLN, as well as EUR/USD from the international Forex market is presented. The exogeneity of the EUR/USD rate is examined. The strong exogeneity hypothesis of the EUR/USD rate is not rejected by the data.

Suggested Citation

  • Anna Pajor, 2011. "A Bayesian Analysis of Exogeneity in Models with Latent Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 3(2), pages 49-73, June.
  • Handle: RePEc:psc:journl:v:3:y:2011:i:2:p:49-73
    as

    Download full text from publisher

    File URL: http://cejeme.eu/publishedarticles/2012-25-24-634682067023593750-8171.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    2. Osiewalski, J. & Steel, M.F.J., 1989. "A Bayesian analysis of exogeneity in models pooling time-series and cross-section data," Discussion Paper 1989-14, Tilburg University, Center for Economic Research.
    3. HENDRY, David F. & RICHARD, Jean-François, 1983. "The econometric analysis of economic time series," LIDAM Reprints CORE 531, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Christophe Rault, 2011. "Long-run strong-exogeneity," Economics Bulletin, AccessEcon, vol. 31(1), pages 1-8.
    5. J.‐P. Florens & M. Mouchart, 1985. "Conditioning In Dynamic Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 15-34, January.
    6. Florens, J.-P. & Mouchart, M., 1985. "Conditioning in dynamic models," LIDAM Reprints CORE 624, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Hendry, David F. & Richard, Jean-Francois, 1982. "On the formulation of empirical models in dynamic econometrics," Journal of Econometrics, Elsevier, vol. 20(1), pages 3-33, October.
    8. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    9. de Luna, Xavier & Johansson, Per, 2006. "Exogeneity in structural equation models," Journal of Econometrics, Elsevier, vol. 132(2), pages 527-543, June.
    10. Anna Pajor, 2005. "Bayesian Analysis of Stochastic Volatility Model and Portfolio Allocation," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 14, pages 229-249, University of Lodz.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pajor Anna & Wróblewska Justyna, 2017. "VEC-MSF models in Bayesian analysis of short- and long-run relationships," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-22, June.
    2. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    3. Tomasz Wozniak, 2012. "Granger-causal analysis of VARMA-GARCH models," Economics Working Papers ECO2012/19, European University Institute.
    4. Krzysztof Osiewalski & Jacek Osiewalski, 2013. "A Long-Run Relationship between Daily Prices on Two Markets: The Bayesian VAR(2)–MSF-SBEKK Model," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(1), pages 65-83, March.
    5. Tomasz Woźniak, 2018. "Granger-causal analysis of GARCH models: A Bayesian approach," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 325-346, April.
    6. Matthieu Droumaguet & Anders Warne & Tomasz Wozniak, 2015. "Granger Causality and Regime Inference in Bayesian Markov-Switching VARs," Department of Economics - Working Papers Series 1191, The University of Melbourne.
    7. Jerzy Marzec & Andrzej Pisulewski, 2017. "The Effect of CAP Subsidies on the Technical Efficiency of Polish Dairy Farms," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 243-273, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Campos & Neil R. Ericsson & David F. Hendry, 2005. "General-to-specific modeling: an overview and selected bibliography," International Finance Discussion Papers 838, Board of Governors of the Federal Reserve System (U.S.).
    2. Hendry, David F & Ericsson, Neil R, 1991. "An Econometric Analysis of U.K. Money Demand in 'Monetary Trends in the United States and the United Kingdom' by Milton Friedman and Anna Schwartz," American Economic Review, American Economic Association, vol. 81(1), pages 8-38, March.
    3. Duo Qin, 2014. "Inextricability of Autonomy and Confluence in Econometrics," Working Papers 189, Department of Economics, SOAS University of London, UK.
    4. Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502.
    5. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    6. Ericsson, Neil R., 1992. "Cointegration, exogeneity, and policy analysis: An overview," Journal of Policy Modeling, Elsevier, vol. 14(3), pages 251-280, June.
    7. Bardsen, Gunnar, 1990. "Dynamic Modelling And The Demand For Narrow Money In Norway," Economic Research Papers 268479, University of Warwick - Department of Economics.
    8. Jim Granato & William West, 1994. "Words And Deeds: Symbolic Politics And Decision Making At The Federal Reserve," Economics and Politics, Wiley Blackwell, vol. 6(3), pages 233-255, November.
    9. Jacek Osiewalski & Mateusz Pipien, 2004. "Bayesian Comparison of Bivariate GARCH Processes in the Presence of an Exogenous Variable," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 6, pages 25-36.
    10. Hendry, David F. & Ericsson, Neil R., 1991. "Modeling the demand for narrow money in the United Kingdom and the United States," European Economic Review, Elsevier, vol. 35(4), pages 833-881, May.
    11. Zant, Wouter, 1997. "Stabilizing prices in commodity markets: Price bounds versus private stockholding," Journal of Policy Modeling, Elsevier, vol. 19(3), pages 253-277, June.
    12. Genaro Sucarrat, 2010. "Econometric reduction theory and philosophy," Journal of Economic Methodology, Taylor & Francis Journals, vol. 17(1), pages 53-75.
    13. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    14. David F. Hendry, 2013. "Econometric Modelling: The ‘Consumption Function’ In Retrospect," Scottish Journal of Political Economy, Scottish Economic Society, vol. 60(5), pages 495-522, November.
    15. Yang, Yung Y. & Yi, Myung Hoon, 2008. "Does financial development cause economic growth? Implication for policy in Korea," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 827-840.
    16. Kremers, Jeroen J M & Ericsson, Neil R & Dolado, Juan J, 1992. "The Power of Cointegration Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 325-348, August.
    17. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    18. Christian Müller-Kademann, 2009. "Biased Estimation in a Simple Extension of a Standard Error Correction Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 145(I), pages 37-60, March.
    19. Michel Mouchart & Renzo Orsi, 2016. "Building a Structural Model: Parameterization and Structurality," Econometrics, MDPI, vol. 4(2), pages 1-16, April.
    20. Udo, Eli A. & Obiora, Isitua K., 2006. "Determinants of Foreign Direct Investment and Economic Growth in the West African Monetary Zone: A System Equations Approach," Conference papers 331519, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Keywords

    exogeneity; Bayesian cuts; latent variables; non-causality; stochastic volatility;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:3:y:2011:i:2:p:49-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.