IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v1y2009i3p285-291.html
   My bibliography  Save this article

Volatility Persistence and Predictability of Squared Returns in GARCH(1,1) Models

Author

Listed:
  • Umberto Triacca

    (University of L'Aquila, Rome)

Abstract

Volatility persistence is a stylized statistical property of financial time-series data such as exchange rates and stock returns. The purpose of this letter is to investigate the relationship between volatility persistence and predictability of squared returns.

Suggested Citation

  • Umberto Triacca, 2009. "Volatility Persistence and Predictability of Squared Returns in GARCH(1,1) Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(3), pages 285-291, November.
  • Handle: RePEc:psc:journl:v:1:y:2009:i:3:p:285-291
    as

    Download full text from publisher

    File URL: http://cejeme.org/publishedarticles/2010-46-07-634035663978281250-2469.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
    2. Edoardo Otrano & Umberto Triacca, 2007. "Testing for Equal Predictability of Stationary ARMA Processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1091-1108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim M. Awad & Abdel-Rahman Al-Ewesat, 2017. "Volatility Persistence in Palestine Exchange Bulls and Bears: An Econometric Analysis of Time Series Data," Review of Economics & Finance, Better Advances Press, Canada, vol. 9, pages 83-97, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    2. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    3. Jie Zhu, 2009. "Pricing volatility of stock returns with volatile and persistent components," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(3), pages 243-269, September.
    4. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    5. Krzysztof DRACHAL, 2017. "Volatility Clustering, Leverage Effects and Risk-Return Tradeoff in the Selected Stock Markets in the CEE Countries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-53, September.
    6. Geoff Willcocks, 2009. "UK Housing Market: Time Series Processes with Independent and Identically Distributed Residuals," The Journal of Real Estate Finance and Economics, Springer, vol. 39(4), pages 403-414, November.
    7. Phantratanamongkol, Supanan & Casalin, Fabrizio & Pang, Gu & Sanderson, Joseph, 2018. "The price-volume relationship for new and remanufactured smartphones," International Journal of Production Economics, Elsevier, vol. 199(C), pages 78-94.
    8. Jie Zhu, 2008. "Testing for Expected Return and Market Price of Risk in Chinese A-B Share Market: A Geometric Brownian Motion and Multivariate GARCH Model Approach," CREATES Research Papers 2008-15, Department of Economics and Business Economics, Aarhus University.
    9. Hartmann, Matthias & Herwartz, Helmut, 2012. "Causal relations between inflation and inflation uncertainty—Cross sectional evidence in favour of the Friedman–Ball hypothesis," Economics Letters, Elsevier, vol. 115(2), pages 144-147.
    10. K. Batu Tunay, 2010. "Banking Crises and Early Warning Systems: A Model Suggestion for Turkish Banking Sector," Journal of BRSA Banking and Financial Markets, Banking Regulation and Supervision Agency, vol. 4(1), pages 9-46.
    11. Fan, John Hua & Todorova, Neda, 2017. "Dynamics of China’s carbon prices in the pilot trading phase," Applied Energy, Elsevier, vol. 208(C), pages 1452-1467.
    12. Gürkan Bozma & Murat Akadg & Rahman Aydin, 2021. "Dynamic Relationships between Oil Price, Inflation and Economic Growth: A VARMA, GARCH-in-mean, asymmetric BEKK Model for Turkey," Economics Bulletin, AccessEcon, vol. 41(3), pages 1266-1281.
    13. Chau, Frankie & Deesomsak, Rataporn & Wang, Jun, 2014. "Political uncertainty and stock market volatility in the Middle East and North African (MENA) countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 1-19.
    14. Sen, Chitrakalpa & Chakrabarti, Gagari & Sarkar, Amitava, 1981. "Asymmetric Response in Foreign Exchange Volatility under Structural Break," MPRA Paper 26817, University Library of Munich, Germany.
    15. Rodrigo Alfaro & Carmen Gloria Silva, 2008. "Measuring Equity Volatility: the case of Chilean Stock Index," Working Papers Central Bank of Chile 462, Central Bank of Chile.
    16. Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
    17. Bialkowski, Jedrzej & Gottschalk, Katrin & Wisniewski, Tomasz Piotr, 2008. "Stock market volatility around national elections," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1941-1953, September.
    18. Jie Zhu, 2008. "Pricing Volatility of Stock Returns with Volatile and Persistent Components," CREATES Research Papers 2008-14, Department of Economics and Business Economics, Aarhus University.
    19. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    20. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.

    More about this item

    Keywords

    GARCH Models; returns; time series; volatility persistence;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:1:y:2009:i:3:p:285-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.