IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0264522.html
   My bibliography  Save this article

An analysis of investors’ behavior in Bitcoin market

Author

Listed:
  • Delia-Elena Diaconaşu
  • Seyed Mehdian
  • Ovidiu Stoica

Abstract

As an emerging digital asset, Bitcoin has been traded for more than a decade, reaching an impressively high market capitalization and continuing to expand its volume of trading at a rapid pace. Many countries have legalized or are considering legalizing a trading platform for this asset, and a set of companies worldwide accept it as a medium of exchange. As a result of this expansion, many studies in finance literature have focused on studying the efficiency of this cryptocurrency. In line with this literature, this paper investigates, using the abnormal returns and abnormal trading volumes methodologies, the dynamics of investors’ reaction to the arrival of unexpected favorable and unfavorable information regarding the Bitcoin market in the context of the three famous hypotheses: the overreaction, the uncertain information, and the efficient market hypotheses. Overall, we find evidence confirming that the Bitcoin market tends to mature over time. More precisely, over the entire analyzed period, investors behave in accordance with the predictions of the uncertain information hypothesis when positive and negative events occur. However, splitting the timespan into sub-periods provides interesting insights. Remarkably in this respect is the fact that starting with the second sub-period, the response of investors in the Bitcoin market supports, in a moderate manner, the postulate of the efficient market hypothesis when favorable events are addressed. Moreover, our findings reveal that during the pandemic period, the efficiency of Bitcoin has increased, thus turning this stressful period into an advantage for this cryptocurrency. This improved market efficiency is also supported by the abnormal trading volume analysis.

Suggested Citation

  • Delia-Elena Diaconaşu & Seyed Mehdian & Ovidiu Stoica, 2022. "An analysis of investors’ behavior in Bitcoin market," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0264522
    DOI: 10.1371/journal.pone.0264522
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264522
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0264522&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0264522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Venelina Nikolova & Juan E. Trinidad Segovia & Manuel Fernández-Martínez & Miguel Angel Sánchez-Granero, 2020. "A Novel Methodology to Calculate the Probability of Volatility Clusters in Financial Series: An Application to Cryptocurrency Markets," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    2. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    3. José Antonio Núñez & Mario I Contreras-Valdez & Carlos A Franco-Ruiz, 2019. "Statistical analysis of bitcoin during explosive behavior periods," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    4. Celeste, Valerio & Corbet, Shaen & Gurdgiev, Constantin, 2020. "Fractal dynamics and wavelet analysis: Deep volatility and return properties of Bitcoin, Ethereum and Ripple," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 310-324.
    5. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ante, Lennart, 2023. "How Elon Musk's Twitter activity moves cryptocurrency markets," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    2. Naseem Al Rahahleh & Ahmed Al Qurashi, 2024. "The impact of COVID-19 on Ethereum returns and Ethereum market efficiency," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 14(3), pages 729-755, September.
    3. Hyeonoh Kim & Eojin Yi & Jooyoung Jeon & Taeyoung Park & Kwangwon Ahn, 2024. "After the Split: Market Efficiency of Bitcoin Cash," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 411-427, July.
    4. Beckmann, Joscha & Geldner, Teo & Wüstenfeld, Jan, 2024. "The relevance of media sentiment for small and large scale bitcoin investors," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    5. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    4. Afees A. Salisu & Aviral Kumar Tiwari & Ibrahim D. Raheem, 2018. "Analysing the distribution properties of Bitcoin returns," Working Papers 058, Centre for Econometric and Allied Research, University of Ibadan.
    5. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    6. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    8. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    9. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    10. Zura Kakushadze & Jim Kyung-Soo Liew, 2020. "Coronavirus: Case for Digital Money?," Papers 2005.10154, arXiv.org.
    11. Aslanidis, Nektarios & Bariviera, Aurelio F. & Perez-Laborda, Alejandro, 2021. "Are cryptocurrencies becoming more interconnected?," Economics Letters, Elsevier, vol. 199(C).
    12. Chen, Xia & Miraz, Mahadi Hasan & Gazi, Md. Abu Issa & Rahaman, Md. Atikur & Habib, Md. Mamun & Hossain, Abu Ishaque, 2022. "Factors affecting cryptocurrency adoption in digital business transactions: The mediating role of customer satisfaction," Technology in Society, Elsevier, vol. 70(C).
    13. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    14. Zura Kakushadze & Willie Yu, 2019. "iCurrency?," Papers 1911.01272, arXiv.org, revised Nov 2019.
    15. Liu, Weiyi, 2019. "Portfolio diversification across cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 200-205.
    16. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    17. Bhuiyan, Rubaiyat Ahsan & Husain, Afzol & Zhang, Changyong, 2021. "A wavelet approach for causal relationship between bitcoin and conventional asset classes," Resources Policy, Elsevier, vol. 71(C).
    18. Pal, Debdatta & Mitra, Subrata K., 2019. "Hedging bitcoin with other financial assets," Finance Research Letters, Elsevier, vol. 30(C), pages 30-36.
    19. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    20. Baig, Ahmed & Blau, Benjamin M. & Sabah, Nasim, 2019. "Price clustering and sentiment in bitcoin," Finance Research Letters, Elsevier, vol. 29(C), pages 111-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0264522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.