Are cryptocurrencies becoming more interconnected?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2021.109725
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Nektarios Aslanidis & Aurelio F. Bariviera & Alejandro Perez-Laborda, 2020. "Are cryptocurrencies becoming more interconnected?," Papers 2009.14561, arXiv.org.
- Aslanidis, Nektarios & Fernández Bariviera, Aurelio & Pérez Laborda, Àlex, 2020. "Are cryptocurrencies becoming more interconnected?," Working Papers 2072/417679, Universitat Rovira i Virgili, Department of Economics.
References listed on IDEAS
- Diebold, Francis X. & Yilmaz, Kamil, 2012.
"Better to give than to receive: Predictive directional measurement of volatility spillovers,"
International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
- Francis X. Diebold & Kamil Yilmaz, 2010. "Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 1001, Koc University-TUSIAD Economic Research Forum, revised Mar 2010.
- David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
- Francis X. Diebold & Kamil Yilmaz, 2009.
"Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets,"
Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- FrancisX. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- Francis X. Diebold & Kamil Yılmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," Koç University-TUSIAD Economic Research Forum Working Papers 0705, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," NBER Working Papers 13811, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring financial asset return and volatility spillovers, with application to global equity markets," Working Papers 08-16, Federal Reserve Bank of Philadelphia.
- Diebold, Francis X. & Yilmaz, Kamil, 2008. "Measuring financial asset return and volatilty spillovers, with application to global equity markets," CFS Working Paper Series 2008/26, Center for Financial Studies (CFS).
- Francis X. Diebold & Kamil Yilmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," PIER Working Paper Archive 07-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Diebold, Francis X. & Yilmaz, Kamil, 2007. "Measuring financial asset return and volatility spillovers, with application to global equity markets," CFS Working Paper Series 2007/02, Center for Financial Studies (CFS).
- Tom Doan, "undated". "RATS programs to replicate Diebold and Yilmaz EJ 2009 spillover calculations," Statistical Software Components RTZ00044, Boston College Department of Economics.
- Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
- Diebold, Francis X. & Yılmaz, Kamil, 2014.
"On the network topology of variance decompositions: Measuring the connectedness of financial firms,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," Koç University-TUSIAD Economic Research Forum Working Papers 1124, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Working Papers 11-45, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Kamil Yılmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," PIER Working Paper Archive 11-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," NBER Working Papers 17490, National Bureau of Economic Research, Inc.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018.
"Estimating global bank network connectedness,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2015. "Estimating Global Bank Network Connectedness," Koç University-TUSIAD Economic Research Forum Working Papers 1512, Koc University-TUSIAD Economic Research Forum.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yılmaz, 2017. "Estimating Global Bank Network Connectedness," NBER Working Papers 23140, National Bureau of Economic Research, Inc.
- Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2015. "Estimating Global Bank Network Connectedness," PIER Working Paper Archive 15-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Jul 2015.
- Jozef Baruník & Tomáš Křehlík, 2018.
"Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk,"
Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
- Jozef Barunik & Tomas Krehlik, 2015. "Measuring the frequency dynamics of financial connectedness and systemic risk," Papers 1507.01729, arXiv.org, revised Dec 2017.
- Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
- Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
- Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
- Bariviera, Aurelio F., 2017.
"The inefficiency of Bitcoin revisited: A dynamic approach,"
Economics Letters, Elsevier, vol. 161(C), pages 1-4.
- Aurelio F. Bariviera, 2017. "The inefficiency of Bitcoin revisited: a dynamic approach," Papers 1709.08090, arXiv.org.
- Pesaran, H. Hashem & Shin, Yongcheol, 1998.
"Generalized impulse response analysis in linear multivariate models,"
Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
- Pesaran, M. H. & Shin, Y., 1997. "Generalised Impulse Response Analysis in Linear Multivariate Models," Cambridge Working Papers in Economics 9710, Faculty of Economics, University of Cambridge.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- David Garcia & Claudio Tessone & Pavlin Mavrodiev & Nicolas Perony, "undated". "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Working Papers ETH-RC-14-001, ETH Zurich, Chair of Systems Design.
- Kurka, Josef, 2019.
"Do cryptocurrencies and traditional asset classes influence each other?,"
Finance Research Letters, Elsevier, vol. 31(C), pages 38-46.
- Josef Kurka, 2017. "Do Cryptocurrencies and Traditional Asset Classes Influence Each Other?," Working Papers IES 2017/29, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Dec 2017.
- Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019.
"An analysis of cryptocurrencies conditional cross correlations,"
Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
- Nektarios Aslanidis & Aurelio F. Bariviera & Oscar Martinez-Iba~nez, 2018. "An analysis of cryptocurrencies conditional cross correlations," Papers 1811.08365, arXiv.org, revised Feb 2019.
- Goodell, John W. & Goutte, Stephane, 2021.
"Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis,"
Finance Research Letters, Elsevier, vol. 38(C).
- John W Goodell & Stéphane Goutte, 2020. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Working Papers halshs-02613277, HAL.
- Merediz-Solà, Ignasi & Bariviera, Aurelio F., 2019.
"A bibliometric analysis of bitcoin scientific production,"
Research in International Business and Finance, Elsevier, vol. 50(C), pages 294-305.
- Ignasi Merediz-Sol`a & Aurelio F. Bariviera, 2019. "A bibliometric analysis of Bitcoin scientific production," Papers 1906.08933, arXiv.org.
- Jushan Bai & Badi Baltagi & Hashem Pesaran, 2016. "Cross‐Sectional Dependence in Panel Data Models: A Special Issue," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 1-3, January.
- Aaron Yelowitz & Matthew Wilson, 2015.
"Characteristics of Bitcoin users: an analysis of Google search data,"
Applied Economics Letters, Taylor & Francis Journals, vol. 22(13), pages 1030-1036, September.
- Wilson, Matthew & Yelowitz, Aaron, 2014. "Characteristics of Bitcoin Users: An Analysis of Google Search Data," MPRA Paper 59661, University Library of Munich, Germany.
- Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
- M. Hashem Pesaran, 2015.
"Testing Weak Cross-Sectional Dependence in Large Panels,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
- Pesaran, M. Hashem, 2012. "Testing Weak Cross-Sectional Dependence in Large Panels," IZA Discussion Papers 6432, Institute of Labor Economics (IZA).
- Pesaran, M. H., 2012. "Testing Weak Cross-Sectional Dependence in Large Panels," Cambridge Working Papers in Economics 1208, Faculty of Economics, University of Cambridge.
- M. Hashem Pesaran, 2012. "Testing Weak Cross-Sectional Dependence in Large Panels," CESifo Working Paper Series 3800, CESifo.
- Vidal-Tomás, David & Ibáñez, Ana M. & Farinós, José E., 2019. "Herding in the cryptocurrency market: CSSD and CSAD approaches," Finance Research Letters, Elsevier, vol. 30(C), pages 181-186.
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
- Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
- David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xingyi & Gan, Kai & Zhou, Qi, 2023. "Dynamic volatility connectedness among cryptocurrencies and China's financial assets in standard times and during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 51(C).
- Thomas F. P. Wiesen & Lakshya Bharadwaj, 2023. "Cryptocurrency Connectedness: Does Controlling for the Cross-Correlations Matter?," Applied Economics Letters, Taylor & Francis Journals, vol. 30(20), pages 2873-2880, November.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Mensi, Walid & Al-Yahyaee, Khamis Hamed & Wanas Al-Jarrah, Idries Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 96-113.
- Andrada-Félix, Julián & Fernandez-Perez, Adrian & Sosvilla-Rivero, Simón, 2020.
"Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
- Julián Andrada-Félix & Adrian Fernandez-Perez & Simón Sosvilla-Rivero, 2019. "“Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities”," IREA Working Papers 201912, University of Barcelona, Research Institute of Applied Economics, revised Jul 2019.
- Ahmed H. Elsayed & Giray Gozgor & Chi Keung Marco Lau, 2022. "Causality and dynamic spillovers among cryptocurrencies and currency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2026-2040, April.
- Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Abubakr Naeem, Muhammad & Iqbal, Najaf & Lucey, Brian M. & Karim, Sitara, 2022. "Good versus bad information transmission in the cryptocurrency market: Evidence from high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
- Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
- Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
- Mensi, Walid & Sensoy, Ahmet & Aslan, Aylin & Kang, Sang Hoon, 2019. "High-frequency asymmetric volatility connectedness between Bitcoin and major precious metals markets," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).
- Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Fei Su & Lili Zhai & Yunyan Zhou & Zixi Zhuang & Feifan Wang, 2024. "Risk contagion in financial markets: A systematic review using bibliometric methods," Australian Economic Papers, Wiley Blackwell, vol. 63(1), pages 163-199, March.
- Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
- Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
- Elsayed, Ahmed H. & Gozgor, Giray & Lau, Chi Keung Marco, 2022. "Risk transmissions between bitcoin and traditional financial assets during the COVID-19 era: The role of global uncertainties," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021.
"Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions,"
International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
- Gang-Jin Wang & Yang-Yang Chen & Hui-Bin Si & Chi Xie & Julien Chevallier, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," Post-Print halshs-04250264, HAL.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018.
"Commodity Connectedness,"
Central Banking, Analysis, and Economic Policies Book Series, in: Enrique G. Mendoza & Ernesto Pastén & Diego Saravia (ed.),Monetary Policy and Global Spillovers: Mechanisms, Effects and Policy Measures, edition 1, volume 25, chapter 4, pages 097-136,
Central Bank of Chile.
- Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2017. "Commodity Connectedness," PIER Working Paper Archive 17-003, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 02 Mar 2017.
- Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2017. "Commodity Connectedness," NBER Working Papers 23685, National Bureau of Economic Research, Inc.
- Diebold, Francis X. & Liu, Laura & Yilmaz, Kamil, 2017. "Commodity connectedness," CFS Working Paper Series 575, Center for Financial Studies (CFS).
More about this item
Keywords
Cryptocurrencies; Market linkages; Diversification;All these keywords.
JEL classification:
- C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
- G01 - Financial Economics - - General - - - Financial Crises
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:199:y:2021:i:c:s0165176521000021. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.