IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v76y2020icp310-324.html
   My bibliography  Save this article

Fractal dynamics and wavelet analysis: Deep volatility and return properties of Bitcoin, Ethereum and Ripple

Author

Listed:
  • Celeste, Valerio
  • Corbet, Shaen
  • Gurdgiev, Constantin

Abstract

The substantial volatility and growth in cryptocurrencies valuations between 2009 and the end of 2017 strongly suggest that both long memory and price volatility and return spillovers should be present in these assets’ dynamics. To date, literature on the major cryptocurrencies price processes does not address jointly and comprehensively their fractal properties, long memory and wavelet analysis, that could robustly confirm the presence of fractal dynamics in their prices, and confirm or deny the validity of the Fractal Market Hypothesis as being applicable to the cryptocurrencies. This research shows that Bitcoin prices exhibit long term memory, although its trend has been reducing overtime. In fact, assessing Bitcoin, Ethereum and Ripple across the period between 2016 and 2017, focusing solely on the period prior to the crash of 2018, we can conclude that Bitcoin was better described by a random walk, showing signs of markets maturity emerging, in contrast, other cryptocurrencies such as Ethereum and Ripple present evidence of a growing underlying memory behaviour.

Suggested Citation

  • Celeste, Valerio & Corbet, Shaen & Gurdgiev, Constantin, 2020. "Fractal dynamics and wavelet analysis: Deep volatility and return properties of Bitcoin, Ethereum and Ripple," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 310-324.
  • Handle: RePEc:eee:quaeco:v:76:y:2020:i:c:p:310-324
    DOI: 10.1016/j.qref.2019.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976919300730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2019.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    2. Ross C Phillips & Denise Gorse, 2018. "Cryptocurrency price drivers: Wavelet coherence analysis revisited," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-21, April.
    3. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    4. M. Ausloos & K. Ivanova, 2001. "Correlations Between Reconstructedeurexchange Rates Versuschf,Dkk,Gbp,Jpyandusd," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 169-195.
    5. Marc Gronwald, 2014. "The Economics of Bitcoins - Market Characteristics and Price Jumps," CESifo Working Paper Series 5121, CESifo.
    6. Stephen J. Taylor, 2007. "Introduction to Asset Price Dynamics, Volatility, and Prediction," Introductory Chapters, in: Asset Price Dynamics, Volatility, and Prediction, Princeton University Press.
    7. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    8. M. Ausloos & K. Ivanova, 2001. "Correlations Between Reconstructed EUR Exchange Rates vs. CHF, DKK, GBP, JPY and USD," Papers cond-mat/0104260, arXiv.org.
    9. Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019. "An analysis of cryptocurrencies conditional cross correlations," Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    12. Aguiar-Conraria, Luís & Azevedo, Nuno & Soares, Maria Joana, 2008. "Using wavelets to decompose the time–frequency effects of monetary policy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2863-2878.
    13. K. Ivanova & M. Ausloos, 2001. "False EUR exchange rates vs. DKK, CHF, JPY and USD. What is a strong currency?," Papers cond-mat/0103033, arXiv.org.
    14. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    15. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    16. Pieters, Gina & Vivanco, Sofia, 2017. "Financial regulations and price inconsistencies across Bitcoin markets," Information Economics and Policy, Elsevier, vol. 39(C), pages 1-14.
    17. Alexandre Roch, 2011. "Liquidity risk, price impacts and the replication problem," Finance and Stochastics, Springer, vol. 15(3), pages 399-419, September.
    18. M. Ausloos & K. Ivanova, 2001. "False Euro (FEUR) exchange rate correlated behaviors and investment strategy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 537-541, April.
    19. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    20. Ausloos, M & Ivanova, K, 2000. "Introducing False EUR and False EUR exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(1), pages 353-366.
    21. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    22. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    23. Rainer Böhme & Nicolas Christin & Benjamin Edelman & Tyler Moore, 2015. "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, American Economic Association, vol. 29(2), pages 213-238, Spring.
    24. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    25. Jamal Bouoiyour & Refk Selmi, 2016. "Bitcoin: a beginning of a new phase?," Economics Bulletin, AccessEcon, vol. 36(3), pages 1430-1440.
    26. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    6. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    7. Corbet, Shaen & Larkin, Charles & Lucey, Brian & Meegan, Andrew & Yarovaya, Larisa, 2020. "Cryptocurrency reaction to FOMC Announcements: Evidence of heterogeneity based on blockchain stack position," Journal of Financial Stability, Elsevier, vol. 46(C).
    8. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    9. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    10. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    11. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    12. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    13. Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis," Finance Research Letters, Elsevier, vol. 29(C), pages 68-74.
    14. Bariviera, Aurelio F., 2021. "One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles," Finance Research Letters, Elsevier, vol. 39(C).
    15. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    16. Symitsi, Efthymia & Chalvatzis, Konstantinos J., 2019. "The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and stocks," Research in International Business and Finance, Elsevier, vol. 48(C), pages 97-110.
    17. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Anoop S Kumar & Taufeeq Ajaz, 2019. "Co-movement in crypto-currency markets: evidences from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-17, December.
    19. Merediz-Solà, Ignasi & Bariviera, Aurelio F., 2019. "A bibliometric analysis of bitcoin scientific production," Research in International Business and Finance, Elsevier, vol. 50(C), pages 294-305.
    20. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:76:y:2020:i:c:p:310-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.