IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0263711.html
   My bibliography  Save this article

Modeling latent spatio-temporal disease incidence using penalized composite link models

Author

Listed:
  • Dae-Jin Lee
  • María Durbán
  • Diego Ayma
  • Jan Van de Kassteele

Abstract

Epidemiological data are frequently recorded at coarse spatio-temporal resolutions to protect confidential information or to summarize it in a compact manner. However, the detailed patterns followed by the source data, which may be of interest to researchers and public health officials, are overlooked. We propose to use the penalized composite link model (Eilers PCH (2007)), combined with spatio-temporal P-splines methodology (Lee D.-J., Durban M (2011)) to estimate the underlying trend within data that have been aggregated not only in space, but also in time. Model estimation is carried out within a generalized linear mixed model framework, and sophisticated algorithms are used to speed up computations that otherwise would be unfeasible. The model is then used to analyze data obtained during the largest outbreak of Q-fever in the Netherlands.

Suggested Citation

  • Dae-Jin Lee & María Durbán & Diego Ayma & Jan Van de Kassteele, 2022. "Modeling latent spatio-temporal disease incidence using penalized composite link models," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-22, March.
  • Handle: RePEc:plo:pone00:0263711
    DOI: 10.1371/journal.pone.0263711
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263711
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0263711&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0263711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying C. MacNab & C. B. Dean, 2001. "Autoregressive Spatial Smoothing and Temporal Spline Smoothing for Mapping Rates," Biometrics, The International Biometric Society, vol. 57(3), pages 949-956, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Ayma Anza, Diego Armando & Durbán, María & Lee, Dae-Jin & Van de Kassteele, Jan, 2016. "Modelling latent trends from spatio-temporally grouped data using composite link mixed models," DES - Working Papers. Statistics and Econometrics. WS 23448, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Craig Anderson & Louise M. Ryan, 2017. "A Comparison of Spatio-Temporal Disease Mapping Approaches Including an Application to Ischaemic Heart Disease in New South Wales, Australia," IJERPH, MDPI, vol. 14(2), pages 1-16, February.
    4. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    5. Peter Congdon, 2006. "A model for geographical variation in health and total life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 14(9), pages 157-178.
    6. Alastair Rushworth & Duncan Lee & Christophe Sarran, 2017. "An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 141-157, January.
    7. Areti Boulieri & Silvia Liverani & Kees Hoogh & Marta Blangiardo, 2017. "A space–time multivariate Bayesian model to analyse road traffic accidents by severity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 119-139, January.
    8. Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
    9. Ying C. MacNab, 2003. "Hierarchical Bayesian Modeling of Spatially Correlated Health Service Outcome and Utilization Rates," Biometrics, The International Biometric Society, vol. 59(2), pages 305-315, June.
    10. F. Nathoo & C. B. Dean, 2007. "A Mixed Mover–Stayer Model for Spatiotemporal Two-State Processes," Biometrics, The International Biometric Society, vol. 63(3), pages 881-891, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.