Hierarchical Bayesian Modeling of Spatially Correlated Health Service Outcome and Utilization Rates
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ying C. MacNab & C. B. Dean, 2001. "Autoregressive Spatial Smoothing and Temporal Spline Smoothing for Mapping Rates," Biometrics, The International Biometric Society, vol. 57(3), pages 949-956, September.
- Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ying C. MacNab & Patrick J. Farrell & Paul Gustafson & Sijin Wen, 2004. "Estimation in Bayesian Disease Mapping," Biometrics, The International Biometric Society, vol. 60(4), pages 865-873, December.
- Geòrgia Escaramís & Josep L. Carrasco & Carlos Ascaso, 2008. "Detection of Significant Disease Risks Using a Spatial Conditional Autoregressive Model," Biometrics, The International Biometric Society, vol. 64(4), pages 1043-1053, December.
- Ugarte, M.D. & Goicoa, T. & Militino, A.F., 2009. "Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2938-2949, June.
- Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.
- Ignacio Abásolo & Miguel Negrín-Hernández & Jaime Pinilla, 2014. "Equity in specialist waiting times by socioeconomic groups: evidence from Spain," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(3), pages 323-334, April.
- MacNab, Ying C. & Lin, Yi, 2009. "On empirical Bayes penalized quasi-likelihood inference in GLMMs and in Bayesian disease mapping and ecological modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2950-2967, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Craig Anderson & Louise M. Ryan, 2017. "A Comparison of Spatio-Temporal Disease Mapping Approaches Including an Application to Ischaemic Heart Disease in New South Wales, Australia," IJERPH, MDPI, vol. 14(2), pages 1-16, February.
- Areti Boulieri & Silvia Liverani & Kees Hoogh & Marta Blangiardo, 2017. "A space–time multivariate Bayesian model to analyse road traffic accidents by severity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 119-139, January.
- Thomas C. McHale & Claudia M. Romero-Vivas & Claudio Fronterre & Pedro Arango-Padilla & Naomi R. Waterlow & Chad D. Nix & Andrew K. Falconar & Jorge Cano, 2019. "Spatiotemporal Heterogeneity in the Distribution of Chikungunya and Zika Virus Case Incidences during their 2014 to 2016 Epidemics in Barranquilla, Colombia," IJERPH, MDPI, vol. 16(10), pages 1-21, May.
- Eibich, Peter & Ziebarth, Nicolas, 2014.
"Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
- Eibich, Peter & Ziebarth, Nicolas R., 2014. "Examining the structure of spatial health effects in Germany using Hierarchical Bayes Models," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 305-320.
- Eibich, Peter & Ziebarth, Nicolas, 2013. "Examining the Structure of Spatial Health Effects using Hierarchical Bayes Models," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79844, Verein für Socialpolitik / German Economic Association.
- Peter Eibich & Nicolas R. Ziebarth, 2013. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," SOEPpapers on Multidisciplinary Panel Data Research 620, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
- Ranjita Pandey & Himanshu Tolani, 2022. "Crime patterns in Delhi: a Bayesian spatio-temporal assessment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2971-2980, December.
- Strong P Marbaniang & Holendro Singh Chungkham & Hemkhothang Lhungdim, 2022. "A structured additive modeling of diabetes and hypertension in Northeast India," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
- Rodrigues, E.C. & Assunção, R., 2012. "Bayesian spatial models with a mixture neighborhood structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 88-102.
- Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
- Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
- Thierno Souleymane Barry & Oscar Ngesa & Nelson Owuor Onyango & Henry Mwambi, 2021. "Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
- Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
- Congdon, P., 2007. "Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2586-2601, February.
- Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
- Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009.
"Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency,"
Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
- Alexandra M. Schmidt & Ajax R. B. Moreira & Thais C. O. Fonseca & Steven M. Helfand, 2006. "Spatial Stochastic Frontier Models: accounting for unobserved local determinants of inefficiency," Discussion Papers 1220, Instituto de Pesquisa Econômica Aplicada - IPEA.
- Alexandra M. Schmidt & Ajax R. B. Moreira & Thais C. O. Fonseca & Steven M. Helfand, 2015. "Spatial Stochastic Frontier Models: Accounting for Unobserved Local Determinants of Inefficiency," Discussion Papers 0172, Instituto de Pesquisa Econômica Aplicada - IPEA.
- Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
- Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
- Peter Congdon, 2013. "Spatially Interpolated Disease Prevalence Estimation Using Collateral Indicators of Morbidity and Ecological Risk," IJERPH, MDPI, vol. 10(10), pages 1-15, October.
- Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
- William Browne & Harvey Goldstein, 2010. "MCMC Sampling for a Multilevel Model With Nonindependent Residuals Within and Between Cluster Units," Journal of Educational and Behavioral Statistics, , vol. 35(4), pages 453-473, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:59:y:2003:i:2:p:305-315. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.