IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262809.html
   My bibliography  Save this article

Heterogeneity estimates in a biased world

Author

Listed:
  • Johannes Hönekopp
  • Audrey Helen Linden

Abstract

Meta-analyses typically quantify heterogeneity of results, thus providing information about the consistency of the investigated effect across studies. Numerous heterogeneity estimators have been devised. Past evaluations of their performance typically presumed lack of bias in the set of studies being meta-analysed, which is often unrealistic. The present study used computer simulations to evaluate five heterogeneity estimators under a range of research conditions broadly representative of meta-analyses in psychology, with the aim to assess the impact of biases in sets of primary studies on estimates of both mean effect size and heterogeneity in meta-analyses of continuous outcome measures. To this end, six orthogonal design factors were manipulated: Strength of publication bias; 1-tailed vs. 2-tailed publication bias; prevalence of p-hacking; true heterogeneity of the effect studied; true average size of the studied effect; and number of studies per meta-analysis. Our results showed that biases in sets of primary studies caused much greater problems for the estimation of effect size than for the estimation of heterogeneity. For the latter, estimation bias remained small or moderate under most circumstances. Effect size estimations remained virtually unaffected by the choice of heterogeneity estimator. For heterogeneity estimates, however, relevant differences emerged. For unbiased primary studies, the REML estimator and (to a lesser extent) the Paule-Mandel performed well in terms of bias and variance. In biased sets of primary studies however, the Paule-Mandel estimator performed poorly, whereas the DerSimonian-Laird estimator and (to a slightly lesser extent) the REML estimator performed well. The complexity of results notwithstanding, we suggest that the REML estimator remains a good choice for meta-analyses of continuous outcome measures across varied circumstances.

Suggested Citation

  • Johannes Hönekopp & Audrey Helen Linden, 2022. "Heterogeneity estimates in a biased world," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
  • Handle: RePEc:plo:pone00:0262809
    DOI: 10.1371/journal.pone.0262809
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262809
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262809&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kurex Sidik & Jeffrey N. Jonkman, 2005. "Simple heterogeneity variance estimation for meta‐analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(2), pages 367-384, April.
    2. Sue Duval & Richard Tweedie, 2000. "Trim and Fill: A Simple Funnel-Plot–Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis," Biometrics, The International Biometric Society, vol. 56(2), pages 455-463, June.
    3. Koehler, Elizabeth & Brown, Elizabeth & Haneuse, Sebastien J.-P. A., 2009. "On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses," The American Statistician, American Statistical Association, vol. 63(2), pages 155-162.
    4. Dan Jackson, 2007. "Assessing the Implications of Publication Bias for Two Popular Estimates of between-Study Variance in Meta-Analysis," Biometrics, The International Biometric Society, vol. 63(1), pages 187-193, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    2. Lifeng Lin & Haitao Chu, 2018. "Rejoinder to “quantifying publication bias in meta‐analysis”," Biometrics, The International Biometric Society, vol. 74(3), pages 801-802, September.
    3. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    4. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    5. Damiano Pizzol & Mike Trott & Igor Grabovac & Mario Antunes & Anna Claudia Colangelo & Simona Ippoliti & Cristian Petre Ilie & Anne Carrie & Nicola Veronese & Lee Smith, 2021. "Laparoscopy in Low-Income Countries: 10-Year Experience and Systematic Literature Review," IJERPH, MDPI, vol. 18(11), pages 1-11, May.
    6. Wolfgang Goymann & John C. Wingfield, 2014. "Male-to-female testosterone ratios, dimorphism, and life history—what does it really tell us?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 685-699.
    7. Alderotti, Giammarco & Rapallini, Chiara & Traverso, Silvio, 2023. "The Big Five personality traits and earnings: A meta-analysis," Journal of Economic Psychology, Elsevier, vol. 94(C).
    8. Ünal, Zehra E. & Kartal, Gamze & Ulusoy, Serra & Ala, Aslı M. & Yilmaz, Munube & Geary, David C., 2023. "Relative contributions of g and basic domain-specific mathematics skills to complex mathematics competencies," Intelligence, Elsevier, vol. 101(C).
    9. Daniele Zago & Maria Eugênia Andrighetto Canozzi & Júlio Otávio Jardim Barcellos, 2020. "Pregnant beef cow’s nutrition and its effects on postnatal weight and carcass quality of their progeny," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-20, August.
    10. Viktoria Maria Baumeister & Leonie Petra Kuen & Maike Bruckes & Gerhard Schewe, 2021. "The Relationship of Work-Related ICT Use With Well-being, Incorporating the Role of Resources and Demands: A Meta-Analysis," SAGE Open, , vol. 11(4), pages 21582440211, November.
    11. Gundula Krack, 2019. "How to make value-based health insurance designs more effective? A systematic review and meta-analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(6), pages 841-856, August.
    12. Angélica Pigola & Priscila Rezende Costa, 2022. "In search of understanding about knowledge and learning on innovation performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3995-4022, July.
    13. Mathur, Maya B & VanderWeele, Tyler, 2017. "Sensitivity analysis for unmeasured confounding in meta-analyses," OSF Preprints jkhfg, Center for Open Science.
    14. Christopher Snyder & Ran Zhuo, 2018. "Sniff Tests as a Screen in the Publication Process: Throwing out the Wheat with the Chaff," NBER Working Papers 25058, National Bureau of Economic Research, Inc.
    15. Chuang Yuan & Jing Wang & Michael Ying, 2016. "Predictive Value of Carotid Distensibility Coefficient for Cardiovascular Diseases and All-Cause Mortality: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-15, April.
    16. Francisco Javier Blanco-Encomienda & Rocío García-Cantero & María José Latorre-Medina, 2020. "Association between Work-Related Rumination, Work Environment and Employee Well-Being: A Meta-Analytic Study of Main and Moderator Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(3), pages 887-910, August.
    17. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    18. Weber, Frank & Knapp, Guido & Ickstadt, Katja & Kundt, Günther & Glass, Anne, 2020. "Zero-cell corrections in random-effects meta-analyses," OSF Preprints qjh5f, Center for Open Science.
    19. Pedro L. Cosio & Manuel Crespo-Posadas & Álvaro Velarde-Sotres & Mireia Pelaez, 2021. "Effect of Chronic Resistance Training on Circulating Irisin: Systematic Review and Meta-Analysis of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    20. Molo, Fabio & Pawel, Samuel & Fraga González, Gorka, 2024. "A Robustness Reproduction of "A Systematic Review and Meta-Analysis of 90 Cohort Studies of Social Isolation, Loneliness and Mortality"," I4R Discussion Paper Series 169, The Institute for Replication (I4R).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.