IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0261875.html
   My bibliography  Save this article

Correlation coefficient local capping REMD adaptive filtering method for laser interference signal

Author

Listed:
  • Junfeng Wu
  • Hanyu Chen
  • Xu Li
  • Guohua Kang
  • Yuangang Lu

Abstract

Considering the issue of noise reduction associated with Laser Doppler Interference (LDI) signal, the paper presented a correlation coefficient local capping robust empirical mode decomposition (REMD) filter algorithm for LDI laser sensor that enables more robust reconstruction of the displacement information from an LDI signal. The performance of the algorithm is studied, and it is shown that the algorithm is capable of removing high-frequency noise. Useful information can be extracted more easily by this method, and the Hilbert phase unwrapping displacement reconstructions method based on this algorithm has been experimentally validated. The experimental results show that the proposed method can improve the frequency separation performance in experiments, and is robust against noise interference.

Suggested Citation

  • Junfeng Wu & Hanyu Chen & Xu Li & Guohua Kang & Yuangang Lu, 2022. "Correlation coefficient local capping REMD adaptive filtering method for laser interference signal," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0261875
    DOI: 10.1371/journal.pone.0261875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0261875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
    2. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    3. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    5. Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
    6. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    8. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    9. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    10. Hamid Nasiri & Mohammad Mehdi Ebadzadeh, 2022. "Multi-step-ahead Stock Price Prediction Using Recurrent Fuzzy Neural Network and Variational Mode Decomposition," Papers 2212.14687, arXiv.org.
    11. Parvaiz Ahmad Ahangar & Shameem Ahmad Lone & Neeraj Gupta, 2023. "Combining Data-Driven and Model-Driven Approaches for Optimal Distributed Control of Standalone Microgrid," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    12. Hongtao Li & Xiaoxuan Li & Shaolong Sun & Zhipeng Huang & Xiaoyan Jia, 2024. "Multivariable forecasting approach of high‐speed railway passenger demand based on residual term of Baidu search index and error correction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2401-2433, November.
    13. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    14. Qiao, Weibiao & Fu, Zonghua & Du, Mingjun & Nan, Wei & Liu, Enbin, 2023. "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow searc," Energy, Elsevier, vol. 274(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0261875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.