IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021731.html
   My bibliography  Save this article

Parameter prediction of lead-bismuth fast reactor under various accidents with recurrent neural network

Author

Listed:
  • Duan, Wenshun
  • Zhang, Kefan
  • Wang, Weixiang
  • Dong, Sifan
  • Pan, Rui
  • Qin, Chong
  • Chen, Hongli

Abstract

Advanced nuclear reactor plays an important role in the sustainable development of green energy, and lead-cooled fast reactors are one of the most promising types. To further improve the safety of lead‑bismuth fast reactors, it is necessary to predict the key parameters and their changing trends under various working conditions quickly and accurately. The prediction method based on the neural network can achieve this goal. In this paper, by using the data of lead‑bismuth reactor NCLFR-Oil under four types of typical accidents, the generalized accident prediction model of lead‑bismuth fast reactor is established with the neural network. First, by comparing the performance differences between the prediction models based on six different neural networks, the gated recurrent neural network with the addition of attention mechanism (AT_GRU) performs the best. Then, a prediction model is established based on the AT_GRU coupled grey wolf optimization algorithm (GWO), and the parameter prediction analysis is carried out for 160 cases of four types of accidents. The results show that the prediction results of the four kinds of accidents are good, even the MAPE, RMSE and R2 of the accidents with relatively poor performance can reach 0.165 %, 1.334 °C and 0.9980, respectively. Whether it is a single-type accident model or a general model, the average prediction time of a single case is between 0.014 and 0.035 s, which can be said that the model has realized real-time prediction. Since this paper is not about the prediction of a single working condition, the prediction model obtained is more generalized and has more practical significance.

Suggested Citation

  • Duan, Wenshun & Zhang, Kefan & Wang, Weixiang & Dong, Sifan & Pan, Rui & Qin, Chong & Chen, Hongli, 2025. "Parameter prediction of lead-bismuth fast reactor under various accidents with recurrent neural network," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021731
    DOI: 10.1016/j.apenergy.2024.124790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
    2. Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
    3. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    4. Wang, Zhen & Lam, Jasmine Siu Lee & Huo, Jiazhen, 2024. "The bidding strategy for renewable energy auctions under government subsidies," Applied Energy, Elsevier, vol. 353(PB).
    5. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2024. "How does green fiscal expenditure promote green total factor energy efficiency? — Evidence from Chinese 254 cities," Applied Energy, Elsevier, vol. 353(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Xiao & Zhang, Xuan & Song, Meiqi & Liu, Xiaojing & Huang, Qingyu, 2024. "NPP accident prevention: Integrated neural network for coupled multivariate time series prediction based on PSO and its application under uncertainty analysis for NPP data," Energy, Elsevier, vol. 305(C).
    2. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).
    3. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    4. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    5. Kandpal, Bakul & Backe, Stian & Crespo del Granado, Pedro, 2024. "Enhancing bargaining power for energy communities in renewable power purchase agreements using Gaussian learning and fixed price bargaining," Energy, Elsevier, vol. 309(C).
    6. Zhou, Gang & Bahn, Gwonsoo & Lao, Jian & Zhang, Yuan, 2024. "COP28 targets for mobilizing private investment in fossil fuels extraction industry to cope with the climate change," Resources Policy, Elsevier, vol. 97(C).
    7. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    8. Sarah Armitage & Noël Bakhtian & Adam Jaffe, 2024. "Innovation Market Failures and the Design of New Climate Policy Instruments," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 5(1), pages 4-48.
    9. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    10. Waidelich, Paul & Steffen, Bjarne, 2024. "Renewable energy financing by state investment banks: Evidence from OECD countries," Energy Economics, Elsevier, vol. 132(C).
    11. Li-chen Zhang & Zheng-ai Dong & Zhi-xiong Tan & Jia-hui Luo & De-kui Yan, 2024. "Institutional Performance and Carbon Reduction Effect of High-Quality Development of New Energy: China’s Experience and Policy Implication," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
    12. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
    13. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    14. Jacob Dut Chol Riak, 2024. "Financing of Renewable and Fossils Related Projects: A Critical Appraisal of Subsidies and Risks in South Sudan," International Journal of Science and Business, IJSAB International, vol. 42(1), pages 84-101.
    15. Waidelich, Paul & Krug, Joscha & Steffen, Bjarne, 2023. "Mobilizing credit for clean energy: De-risking and public loan provision under learning spillovers," ZEW Discussion Papers 23-040, ZEW - Leibniz Centre for European Economic Research.
    16. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    17. Deleidi, Matteo & Mazzucato, Mariana & Semieniuk, Gregor, 2020. "Neither crowding in nor out: Public direct investment mobilising private investment into renewable electricity projects," Energy Policy, Elsevier, vol. 140(C).
    18. Briera, Thibault & Lefèvre, Julien, 2024. "Reducing the cost of capital through international climate finance to accelerate the renewable energy transition in developing countries," Energy Policy, Elsevier, vol. 188(C).
    19. Nicole B. Baker & Christian Haddad, 2024. "Private ownership and management control decisions in infrastructure from the perspective of Transaction Cost Theory: Evidence from emerging economies," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 764-791, July.
    20. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.