IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0258791.html
   My bibliography  Save this article

Rapid estimation of photosynthetic leaf traits of tropical plants in diverse environmental conditions using reflectance spectroscopy

Author

Listed:
  • Julien Lamour
  • Kenneth J Davidson
  • Kim S Ely
  • Jeremiah A Anderson
  • Alistair Rogers
  • Jin Wu
  • Shawn P Serbin

Abstract

Tropical forests are one of the main carbon sinks on Earth, but the magnitude of CO2 absorbed by tropical vegetation remains uncertain. Terrestrial biosphere models (TBMs) are commonly used to estimate the CO2 absorbed by forests, but their performance is highly sensitive to the parameterization of processes that control leaf-level CO2 exchange. Direct measurements of leaf respiratory and photosynthetic traits that determine vegetation CO2 fluxes are critical, but traditional approaches are time-consuming. Reflectance spectroscopy can be a viable alternative for the estimation of these traits and, because data collection is markedly quicker than traditional gas exchange, the approach can enable the rapid assembly of large datasets. However, the application of spectroscopy to estimate photosynthetic traits across a wide range of tropical species, leaf ages and light environments has not been extensively studied. Here, we used leaf reflectance spectroscopy together with partial least-squares regression (PLSR) modeling to estimate leaf respiration (Rdark25), the maximum rate of carboxylation by the enzyme Rubisco (Vcmax25), the maximum rate of electron transport (Jmax25), and the triose phosphate utilization rate (Tp25), all normalized to 25°C. We collected data from three tropical forest sites and included leaves from fifty-three species sampled at different leaf phenological stages and different leaf light environments. Our resulting spectra-trait models validated on randomly sampled data showed good predictive performance for Vcmax25, Jmax25, Tp25 and Rdark25 (RMSE of 13, 20, 1.5 and 0.3 μmol m-2 s-1, and R2 of 0.74, 0.73, 0.64 and 0.58, respectively). The models showed similar performance when applied to leaves of species not included in the training dataset, illustrating that the approach is robust for capturing the main axes of trait variation in tropical species. We discuss the utility of the spectra-trait and traditional gas exchange approaches for enhancing tropical plant trait studies and improving the parameterization of TBMs.

Suggested Citation

  • Julien Lamour & Kenneth J Davidson & Kim S Ely & Jeremiah A Anderson & Alistair Rogers & Jin Wu & Shawn P Serbin, 2021. "Rapid estimation of photosynthetic leaf traits of tropical plants in diverse environmental conditions using reflectance spectroscopy," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
  • Handle: RePEc:plo:pone00:0258791
    DOI: 10.1371/journal.pone.0258791
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258791
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0258791&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0258791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    2. Edward T. A. Mitchard, 2018. "The tropical forest carbon cycle and climate change," Nature, Nature, vol. 559(7715), pages 527-534, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Huihui Ding & Wensheng Chen & Jiangrong Li & Fangwei Fu & Yueyao Li & Siying Xiao, 2023. "Physiological Characteristics and Cold Resistance of Five Woody Plants in Treeline Ecotone of Sygera Mountains," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    3. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    4. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    5. Ribeiro, N.S. & Armstrong, Amanda Hildt & Fischer, Rico & Kim, Yeon-Su & Shugart, Herman Henry & Ribeiro-Barros, Ana I. & Chauque, Aniceto & Tear, T. & Washington-Allen, Robert & Bandeira, Romana R., 2021. "Prediction of forest parameters and carbon accounting under different fire regimes in Miombo woodlands, Niassa Special Reserve, Northern Mozambique," Forest Policy and Economics, Elsevier, vol. 133(C).
    6. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    7. Adam R. Martin & Rachel O. Mariani & Kimberley A. Cathline & Michael Duncan & Nicholas J. Paroshy & Gavin Robertson, 2022. "Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    8. Cloos, Janis & Greiff, Matthias, 2021. "Combating climate change: Is the option to exploit a public good a barrier for reaching critical thresholds? Experimental evidence," MPRA Paper 107144, University Library of Munich, Germany.
    9. Yeonggeun Song & Sukwoo Kim & Haeun Koo & Hyeonhwa Kim & Kidae Kim & Jaeuk Lee & Sujin Jang & Kyeong Cheol Lee, 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    10. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    12. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Nadal, Miquel & Flexas, Jaume, 2019. "Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops," Agricultural Water Management, Elsevier, vol. 216(C), pages 457-472.
    14. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    15. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Valentin Journé & Andrew Hacket-Pain & Michał Bogdziewicz, 2023. "Evolution of masting in plants is linked to investment in low tissue mortality," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Margot Neyret & Gaëtane Provost & Andrea Larissa Boesing & Florian D. Schneider & Dennis Baulechner & Joana Bergmann & Franciska T. Vries & Anna Maria Fiore-Donno & Stefan Geisen & Kezia Goldmann & An, 2024. "A slow-fast trait continuum at the whole community level in relation to land-use intensification," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    18. Lamthai Asanok & Rungrawee Taweesuk & Torlarp Kamyo, 2021. "Plant Functional Diversity Is Linked to Carbon Storage in Deciduous Dipterocarp Forest Edges in Northern Thailand," Sustainability, MDPI, vol. 13(20), pages 1-12, October.
    19. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Kumeh, Eric Mensah & Bieling, Claudia & Birner, Regina, 2022. "Food-security corridors: A crucial but missing link in tackling deforestation in Southwestern Ghana," Land Use Policy, Elsevier, vol. 112(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0258791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.