IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i7p1056-d1426264.html
   My bibliography  Save this article

Cyclic Electron Flow Alleviates the Stress of Light Fluctuation on Soybean Photosynthesis

Author

Listed:
  • Yi Lei

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

  • Jing Gao

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

  • Qi Wang

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

  • Weiying Zeng

    (Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China)

  • Dhungana Diwakar

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

  • Yaodan Zhang

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

  • Xianming Tan

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

  • Zudong Sun

    (Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China)

  • Feng Yang

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

  • Wenyu Yang

    (College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
    Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

Crops often face light intensity fluctuations in natural settings. Intercropping is widely used to improve crop yield and resource utilization worldwide, but crops suffer from high-frequency and high-intensity light fluctuations due to mutual crop influence. Soybean is an important legume crop and is often intercropped with other crops, but little is known about soybean’s response to light fluctuation environments. Herein, three fluctuation frequencies (1, 10, and 20 min/cycle) were used to analyze soybean photosynthesis responses by measuring leaf growth, chlorophyll content, gas exchange, and electron transfer. Our data revealed that faster fluctuation frequencies led to the stronger suppression of soybean morphology and photosynthesis, with significant reductions of 31.31% and 21.58%, respectively. Damage to photosystems II (PSII) and I (PSI) also intensified, with significant decreases of 18.52% and 18.38% in their effective quantum yields Y(II) and Y(I). Additionally, increased fluctuation frequency exacerbated the consumption of the plastoquinone pool and linear electron flow but enhanced the cyclic electron flow across the thylakoid membrane and, thus, increased heat dissipation in PSII. Our findings indicate that an increased fluctuation frequency inflicted more severe damage on the soybean photosynthesis system. However, PSI-enhanced CEF improved NPQ and coordinated photoprotection to some extent.

Suggested Citation

  • Yi Lei & Jing Gao & Qi Wang & Weiying Zeng & Dhungana Diwakar & Yaodan Zhang & Xianming Tan & Zudong Sun & Feng Yang & Wenyu Yang, 2024. "Cyclic Electron Flow Alleviates the Stress of Light Fluctuation on Soybean Photosynthesis," Agriculture, MDPI, vol. 14(7), pages 1-13, June.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1056-:d:1426264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/7/1056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/7/1056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Huihui Ding & Wensheng Chen & Jiangrong Li & Fangwei Fu & Yueyao Li & Siying Xiao, 2023. "Physiological Characteristics and Cold Resistance of Five Woody Plants in Treeline Ecotone of Sygera Mountains," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    3. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    4. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    5. Adam R. Martin & Rachel O. Mariani & Kimberley A. Cathline & Michael Duncan & Nicholas J. Paroshy & Gavin Robertson, 2022. "Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    6. Yeonggeun Song & Sukwoo Kim & Haeun Koo & Hyeonhwa Kim & Kidae Kim & Jaeuk Lee & Sujin Jang & Kyeong Cheol Lee, 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    7. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    9. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Nadal, Miquel & Flexas, Jaume, 2019. "Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops," Agricultural Water Management, Elsevier, vol. 216(C), pages 457-472.
    11. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    12. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Valentin Journé & Andrew Hacket-Pain & Michał Bogdziewicz, 2023. "Evolution of masting in plants is linked to investment in low tissue mortality," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Margot Neyret & Gaëtane Provost & Andrea Larissa Boesing & Florian D. Schneider & Dennis Baulechner & Joana Bergmann & Franciska T. Vries & Anna Maria Fiore-Donno & Stefan Geisen & Kezia Goldmann & An, 2024. "A slow-fast trait continuum at the whole community level in relation to land-use intensification," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    15. Lamthai Asanok & Rungrawee Taweesuk & Torlarp Kamyo, 2021. "Plant Functional Diversity Is Linked to Carbon Storage in Deciduous Dipterocarp Forest Edges in Northern Thailand," Sustainability, MDPI, vol. 13(20), pages 1-12, October.
    16. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Yibiao Zou & Constantin M. Zohner & Colin Averill & Haozhi Ma & Julian Merder & Miguel Berdugo & Lalasia Bialic-Murphy & Lidong Mo & Philipp Brun & Niklaus E. Zimmermann & Jingjing Liang & Sergio de-M, 2024. "Positive feedbacks and alternative stable states in forest leaf types," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).
    19. David S. Ellsworth & Kristine Y. Crous & Martin G. Kauwe & Lore T. Verryckt & Daniel Goll & Sönke Zaehle & Keith J. Bloomfield & Philippe Ciais & Lucas A. Cernusak & Tomas F. Domingues & Mirindi Eric , 2022. "Convergence in phosphorus constraints to photosynthesis in forests around the world," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Xiaobo Huang & Xuedong Lang & Shuaifeng Li & Wande Liu & Jianrong Su, 2022. "Leaf Carbon, Nitrogen and Phosphorus Stoichiometry in a Pinus yunnanensis Forest in Southwest China," Sustainability, MDPI, vol. 14(10), pages 1-10, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1056-:d:1426264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.